Edexcel Maths M3

Mark Scheme Pack

$$
2001-2015
$$

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679
Paper No. M3

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

Question number	Scheme	Marks
4. (4)	$\begin{aligned} & g=k / R^{2} \Rightarrow k=R^{2} g \\ & a=\frac{k}{x^{2}} \\ & \frac{r d v}{d x}=-\frac{R^{2} g}{x^{2}} \end{aligned}$	$\begin{aligned} & B 1 \\ & \rightarrow M 1 \\ & \mathrm{MI} \mathrm{Alc.50,} \end{aligned}$
-5)	$\begin{align*} \int v d v & =-\int \frac{R^{2} g}{x^{2}} d x \\ \frac{v^{2}}{2} & =\frac{R^{2} g(+c)}{x} \text { correct corect } \\ x=R, v & =u \text { or } u x \cdot f \text { ímits } \\ \frac{v^{2}}{2} & =\frac{R^{2} J}{x}+\frac{u^{2}}{2}-R_{g} \\ \text { use of } v & =0 \\ X & =\frac{2 g R^{2}}{2 g R-u^{2}} \tag{6} \end{align*}$	$\begin{array}{r} \rightarrow H 1 \\ A 1 \\ \rightarrow+1 \\ A 1 \\ M 1 \\ A 1 \end{array}$
$5 .(a)$	$\pi r^{2} h$ $\frac{1}{6} \pi r^{2} h$ $\frac{5}{6} \pi r^{2} h$ (6) (1) \bar{x} $\frac{1}{2} h$ $\frac{7 h}{8}$ $6 \cdot \frac{1}{2} h$ $-\frac{7 h}{8}=5 \bar{x}$	82 -le.e.0. B2 -le.e.0.0. MI AI Al
(b)	$\tan \alpha=\frac{h-\bar{x}}{r}$ use of $=4$ r toetfoin expression in h arroung $\begin{equation*} \alpha=66.5^{\circ}(1 D P) \tag{ii} \end{equation*}$	$\begin{equation*} \underbrace{M 1}_{\substack{M 1 \\ M 1}} \tag{4} \end{equation*}$

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6679
Paper No. M3

: Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6679
Paper No. M3

Question number	Scheme	Marks
1.	$\begin{aligned} 0.2 a & =\frac{5}{x+1} \\ 0.2 v \frac{d v}{d x} & =\frac{5}{x+1} \\ \int v d v & =\int \frac{25}{x+1} d x \\ \frac{1}{2} v^{2} & =25 \ln (x+1)(+C) \\ x=0, v=5 & \Rightarrow c=12.5 \\ \frac{225}{2} & =25 \ln (x+1)+12.5 \\ x & =53.6(3 S F) \end{aligned}$	MI $\left[\begin{array}{l} \rightarrow M 1 \\ \rightarrow M 1 \\ A 1 \\ A 1 \\ M 1 \\ A 1 \end{array}\right.$
2.6)	$\begin{gather*} \text { PE LeSS }=0.5 g(2+x) ; E P E=\frac{19.6 x^{2}}{4} \\ 0.5 g(2+x)=\frac{19.6 x^{2}}{4} \\ k\left(x^{2}-x-2\right)=0 \\ A-C=4 x \end{gather*}$	B1; B1 $\begin{aligned} & M 1 \\ & A 1 \\ & M 1 \\ & A-1 \end{aligned}$
(b)	$\begin{aligned} T_{c}=\frac{19.6 \times 2}{2} & =19.6 \\ 19.6-0.5 g & =0.5 \mathrm{a} \\ a & =29.4 \mathrm{~ms}^{-2} \end{aligned}$	$B I \sim$ $M 1$ $M 1$ (3)
3. (a)	Line of action of weight must pass through e which is not above centre of rod (or equivalent)	B1 (1)
(b)	Methed A: $\begin{array}{ll} R(\text { along AC }): & T_{1}=2 m g \sin \alpha=6 m g / 5 \\ R(\text { alang } \mathrm{BC}): & T_{2}=2 m g \cos \alpha=8 \mathrm{mg} / 5= \end{array}$ [Equiv. to moments abont A, B raspeotimis] Method B: $R(1), T_{1} \sin \alpha+T_{2} \tan \alpha=2 \operatorname{lng}$ $t \rightarrow 1, T_{1} \cos \alpha=T_{2} s=\alpha$ saluing to frud T_{1} or T_{2} $T_{1}=6 \mathrm{~ns} / \mathrm{s}: T_{2}=8 \mathrm{~ms} / \mathrm{s} 4$	$\begin{aligned} & M 1 \begin{array}{l} M 1 A 1 \\ M 1 A 1 \end{array} \\ & \rightarrow M 1 \\ & \rightarrow M 1 \\ & M 1 \\ & A 1 ; A 1 \end{aligned}$
(c)	$\begin{aligned} \frac{8 m g}{5} & =\frac{k g f B(-a)}{a} \\ B C & =2 a \sin \alpha \\ k & =8 \end{aligned}$	$\begin{array}{ll} \mathrm{Ml} \text { Al } \\ \mathrm{Bi}_{1} & \\ \mathrm{Al} & \text { (4) } \end{array}$

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education
Subject MECHANICS 6679
Paper No. M3

Question number	Scheme	Marks
4.(a)	$\begin{aligned} \int_{0}^{r}(\pi) y^{2} x d x & =\pi \int_{0}^{r}(\pi) y^{2} d x \\ \int_{0}^{r} r x^{2} d x & =\bar{x} \int_{0}^{r} r d x \\ {\left[(r) \frac{x^{3}}{3}\right]_{0}^{r} } & =\pi\left[(r) \frac{x^{2}}{2}\right]_{0}^{r} \\ \bar{x} & =2 r / 3 \end{aligned}$	$\left[\begin{array}{lll} {\left[\begin{array}{ll} & M 1 \end{array}\right.} \\ & M 1 & \\ & A 1+1 & \\ A 1 & \text { (6) } \end{array}\right.$
(b)	vertical tho' CM and lowast poit of plave ferce $\begin{aligned} \operatorname{ta} \alpha & =5 / \Gamma / 3 \\ \alpha & \left.=72^{\circ} \text { (nearest } \alpha \operatorname{cosmac}\right) \end{aligned}$	$\begin{aligned} & M 1 \\ & M 1+1 \\ & 41 \end{aligned}$
5.	$R(1) R \cos 25^{\circ}-F \sin 25^{\circ}=m g$ $R(\leftrightarrow), R \sin 25^{\circ}+F \cos 25^{\circ}=\frac{m v^{2}}{40}$ $F=0.6 R$ used Eliminating R Soluing tor v $v=24 \cdot 1 \mathrm{~ms}^{-1}, 24 \mathrm{~ms}^{-1}$	$\begin{aligned} & \vec{m} \begin{array}{l} m \\ \rightarrow m_{1} \end{array} A_{2} \\ & m 1 \\ & \rightarrow m_{1} \\ & m 1 \\ & A 1 \end{aligned}$
$6 \cdot(4)$	$\begin{aligned} & \text { if S.H.M, } a=1.2 \\ & 0 B C \quad \text { ising } v^{2}=w^{2}\left(a^{2}-x^{2}\right) \\ & 0.27=w^{2}\left(1.2^{2}-0.6^{2}\right) \text { or } 0.2=\omega^{2}\left(1.2^{2}-0.8^{2}\right) \end{aligned}$ Solve for $w(=0.5)$ and inse in other eqci shown to be correct $\begin{aligned} & v=a w=1.2 \times 0.5=0.6^{*} \\ & \|\ddot{x}\|=w^{2} \times 0.6=0.15 \mathrm{mt}^{-2} \\ & 0.6=a \sin \omega t \text { or } 0.8=a \sin \omega t \\ & t=\frac{1}{\omega}\left(\sin ^{-1} \frac{0.8}{a}-8=^{-1} \frac{0.6}{a}\right) \\ & =0.412 \mathrm{~s}(35 F) \end{aligned}$	$\left[\begin{array}{lll} B 1 & & \\ \rightarrow \begin{array}{lll} M 1 \\ A 1 \end{array} & \\ M 1 & & \\ A 1 & \text { c.s.0. } & \text { (5) } \end{array}\right.$
$\begin{aligned} & \text { (b) } \\ & \text { (c) } \\ & \text { (d) } \end{aligned}$		M1A1 (2)
		71alv (2)
		$\begin{aligned} & M 1 \\ & M 1 A 1 N \\ & A 1 \end{aligned}$
) (13)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education

Paper No. M3

Question Number	Scheme	Marks
1. (a) (b)	$\begin{aligned} & a=0.25 \\ & \frac{2 \pi}{\omega}=2 \Rightarrow \omega=\pi \\ & -0.125=0.25 \cos \omega t \\ & t=\frac{1}{\pi} \cos ^{-1}(-0.5) \\ & =\frac{2}{3} \end{aligned}$	B1B1M1A1M1A1 \quad(6) $\quad(6$ marks $)$
2. (a) (b)	$\begin{aligned} (\uparrow) 3 m g \cos \alpha^{\circ} & =m g \\ \alpha & =\cos ^{-1}\left(\frac{1}{3}\right) \\ & =70.5 \\ (\leftarrow) 3 m g \sin \alpha & =m r \times 2 g k \\ l \sin \alpha & =r \\ l & =\frac{3}{2} k \end{aligned}$	M1 A1 M1 A1 (4) M1 A1 B1 M1 A1 (5) (9 marks)
3. (a) (b) (c)	$\begin{aligned} & 2 \mathrm{e}^{-0.1 x}=2.5 a \\ & \frac{4}{5} \mathrm{e}^{-0.1 x}=v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & -8 \mathrm{e}^{-0.1 x}=\frac{1}{2} v^{2}(+c) \\ & x=0, v=2 \Rightarrow c=-10 \\ & v^{2}=20-16 \mathrm{e}^{-0.1 x} \\ & 16=20-16 \mathrm{e}-0.1 x \Rightarrow e^{-0.1 x}=\frac{1}{4} \\ & 0.1 x=\ln 4 \\ & x=13.9 \end{aligned}$ Appropriate comment.	M1 A1 M1 A1 M1 A1 (6) M1 M1 A1 (3) B1 (1) (10 marks)

Question Number	Scheme	Marks
4. (a) (b)	$\begin{aligned} & \frac{1}{2} \times 0.2 \times 5^{2}-\frac{1}{2} \times 0.2 \times u^{2}=\frac{1}{2} \times \frac{20(0.5)^{2}}{1.5} \\ & u^{2}=\frac{25}{3} \\ & u=2.89 \mathrm{~ms}^{-1} \\ & \frac{1}{2} \times 0.2 \times 5^{2}-\frac{1}{2} \times 0.2 \times 1.5^{2}=\frac{1}{2} \times \frac{20 x^{2}}{1.5} \\ & x^{2}=0.34125 \\ & T=\frac{20 x}{1.5}=7.8 \mathrm{~N} \end{aligned}$	M1 A1 A1 M1 A1 (5) M1 A1 M1 M1 A1 (5) (10 marks)
5. (a)		M1 A1 B1 B1 M1 A1 M1 A1 cso (8) M1 M1 A1 A1 (4) (12 marks)

Question Number	Scheme	Marks
6. (a) (b) (d)	$\begin{align*} & m g=\frac{8 m g e}{4 a} \\ & \frac{9}{2} a=A O \tag{2}\\ & m g-\frac{8 m g}{4 a}(e+x)=m \ddot{x} \\ & \ddot{x}=-\frac{2 g}{a} x \\ & T=2 \pi \sqrt{\frac{a}{2 g}}=\pi \sqrt{\frac{2 a}{g}} \quad(\text { *) } \tag{*}\\ & v=d \omega \\ & \frac{1}{2} \sqrt{g a}=d \sqrt{\frac{2 g}{a}} \\ & d=\frac{a}{2 \sqrt{2}}=a \frac{\sqrt{2}}{4}=0.35 a \text { (awrt) } \end{align*}$ Partly under gravity, partly SHM	M1 M1 A1 M1 A1 M1 A1 (7) M1 A1 ft on ω A1 (3) B1 B1 (2) (14 marks)
7. (a) (b) (c)	$\begin{align*} & \frac{1}{2} m u^{2}=m g l(1-\cos \theta) \\ & \quad u=\sqrt{\frac{2}{3}} g l \\ & T-m g \cos \theta=\frac{m v^{2}}{l} \\ & \frac{1}{2} m u^{2}-\frac{1}{2} m v^{2}=m g l(1-\cos \theta) \\ & \text { eliminating } v^{2}, \quad T=\frac{m g}{3}(9 \cos \theta-4) \tag{*}\\ & \max T, \theta=0, T_{M A X}=\frac{5 m g}{3} \\ & \min T, \cos \theta=\frac{2}{3}, T_{M I N}=\frac{2 m g}{3} \\ & \frac{2 m g}{3} \leq T \leq \frac{5 m g}{3} \end{align*}$	M1 A1 A1 A1 (4) M1 A1 M1 A1 M1, A1 cso (6) M1 M1 A1 A1 (4) (14 marks)

Question Number	Scheme	Marks
1.		B1 M1 A 1 M1 A1 (5 marks)
2. (a) (b) (c)	$3,4,5 \Delta$ $\mathrm{R}(\uparrow) T \sin \theta=m g$ $T=\frac{5 m g}{4}$ $\mathrm{R}(\leftarrow) \quad T+T \cos \theta=\frac{m v^{2}}{3 l}$ $\begin{aligned} & \frac{8}{5} \times \frac{5 m g}{4}=\frac{m v^{2}}{3 l} \\ & v=\sqrt{6 g l} \end{aligned}$ Could not assume tensions same	B1 M1 A1 M1 A2 M1 A1 (5) B1 (1) (9 marks)
3. (a) (b)		M1 A1 B1 B1 M1 A1 A1 M1, M1 A1 \quad (10 marks)

Question Number	Scheme	Marks
4. (a) (b) (c) (d)	$\begin{gathered} \frac{2 \pi}{\omega}=\pi \Rightarrow=2 \\ 2.4^{2}=4\left(a^{2}-0.5^{2}\right) \\ a=1.3 \mathrm{~m} \\ v_{\max }=a \omega=2.6 \mathrm{~m} \mathrm{~s}^{-1} \\ \operatorname{arct}_{\max }=a \omega^{2}=5.2 \mathrm{~m} \mathrm{~s}^{-2} \\ 0.5=1.3 \sin 2 t \\ t=\frac{1}{2} \sin ^{-1}\left(\frac{0.5}{1.3}\right) \\ \therefore \text { Total time }=4 t=0.79(2 \mathrm{dp}) \end{gathered}$	B1 M1 A1ft A1 B1 (4) B1ft (1) M1 M1 A1 M1 A1 $\quad(\mathbf{1 1}$ marks)
5. (a) (b)	$\begin{aligned} & 800 \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{48000}{(t+2)^{2}} \\ & v=60 \int \frac{\mathrm{~d} t}{(t+2)^{2}}=\frac{-60}{(t+2)}(+c) \\ & t=0, v=0 \Rightarrow c=30 \\ & v=30-\frac{60}{(t+2)} \Rightarrow v \rightarrow 30 \text { as } t \rightarrow \infty \\ & s=\int v \mathrm{~d} t=30 t-60 \ln (t+2)(+c) \\ & \text { substitute in } t=0 \text { and } t=6 \\ & s=180-60 \ln 8,--60 \ln 2 \\ & \approx 96.8 \mathrm{~m} \end{aligned}$	M1 M1 A1 M1 A1 A1 M1 A1 M1 A1, A1 A1 \quad (12 marks)

Question Number	Scheme	Marks
1.	$\begin{array}{r} R=m g \\ F=\mu R=\mu m g \end{array}$ Attempt to relate Fd to EPE $\frac{2}{3} m \mathrm{~g} d=\frac{4 m \mathrm{~g}\left(\frac{a}{2}\right)^{2}}{2 a}$ Final answer: $\quad d=\frac{3}{4} a$	B1 B1 M1 M1 A1 ft A1 (6) (6 marks)
2.	(\downarrow) $\quad R \cos 10^{\circ}=m \mathrm{~g}$ $(\leftrightarrow) R \sin 10^{\circ}=\frac{m v^{2}}{r}$ Solving for $r: r=\left[\frac{18^{2}}{g \tan 10^{\circ}}\right]$ $r=190(\mathrm{~m})$ [Accept 187, 188]	M1 A1 M1 A1ft M1 M1 A1 (6) $(6$ marks)
3. (a)	$\begin{aligned} & \frac{1}{10} x(4-3 x)=0.2 a \\ & \frac{1}{10} x(4-3 x)=0.2 v \frac{\mathrm{~d} v}{\mathrm{~d} x} \text { or } \frac{1}{10} x(4-3 x)=0.2 \frac{\mathrm{~d}\left(\frac{1}{2} v^{2}\right)}{\mathrm{d} x} \end{aligned}$ Integrating: $v^{2}=2 x^{2}-x^{3}(+C)$ or equivalent Substituting $x=6, v=0$ to find candidate's C $\begin{equation*} v^{2}=2 x^{2}-x^{3}+144 \tag{7} \end{equation*}$ Substituting $x=0$ and finding $v ; \quad v=12\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1 A1 M1 M1 A1 M1 A1 M1; A1 ft (2) (9 marks)

($\mathrm{ft}=$ follow through mark)

Question Number	Scheme	Marks
4. $\begin{array}{r}(a) \\ \\ \\ \\ \\ (b) \\ \text { (c) }\end{array}$	(\downarrow) $(T-S) \cos \theta=m g$ $\begin{aligned} (\leftrightarrow)(T+S) \sin \theta & =m r \omega^{2} \\ & =m(l \sin \theta) \omega^{2} \end{aligned}$ Finding T in terms of l, m, ω^{2} and g $\begin{equation*} T=\frac{1}{6} m\left(3 l \omega^{2}+4 g\right) \tag{*} \end{equation*}$ $\begin{equation*} S=\frac{1}{6} m\left(3 l \omega^{2}-4 g\right) \tag{*} \end{equation*}$ any correct form Setting $S \geq 0 ; \quad \omega^{2} \geq \frac{4 \mathrm{~g}}{3 l}$ (no wrong working seen)	M1 A1 M1 A1 ft A1 M1 A1 M1 A1 M1 A1 (2) (11 marks)
5. (a)	Hooke's Law: $T=\frac{12 x}{0.6} \quad[=20 x]$ Equation of motion: $(-) T=0.8 \ddot{x}$ $-\frac{12 x}{0.6}=0.8 \ddot{x} \quad \ddot{x}=-25 x$ Finding ω from derived equation of form $\ddot{x}=-\omega^{2} x$ Period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{5}$ no incorrect working seen Substituting (candidate's) ω and a in $\omega^{2} a ;=25 \times 0.25=6.25\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ (or finding $T_{\max }=0.8 a \Rightarrow a=5 / 0.8=6.25$) Complete method for $x ; x=0.25 \cos 10^{\circ}(-0.2098)$ Using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \Rightarrow v=(\pm) 5 \sqrt{ }\left[(0.25)^{2}-\left(0.25 \cos 10^{\circ}\right)\right]$ $v=(\pm) 0.68\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Direction $\overrightarrow{O B}$ or equivalent	

(ft = follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper)

Question Number	Scheme	Marks
6. (a)	Energy: $\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=m g a(1-\cos \theta)$ Radial: $(\pm R)+m g \cos \theta=\frac{m v^{2}}{a}$ Eliminating v and finding $\cos \theta=, \frac{u^{2}+2 g a}{3 g a}$ Energy (C and ground): $\quad \frac{1}{2} m\left(\frac{9 a g}{2}\right)-\frac{1}{2} m v^{2}=m g a(1=\cos \theta)$ Eliminating v : $\begin{aligned} & \frac{1}{2} m\left(\frac{9 a g}{2}\right)-\frac{1}{2} m a g \cos \theta=m g a(1+\cos \theta) \\ & \cos \theta=\frac{5}{6} \\ & \quad \theta=34^{\circ} \end{aligned}$	M1 A1 A1 M1 A1 M1, A1 (7) M1 A1 M1 A1 M1 A1 ft A1 (7) \quad (14 marks)
Alt (b)	Or energy (A and ground): $\quad \frac{1}{2} m\left(\frac{9 a g}{2}\right)-\frac{1}{2} m u^{2}=2 m g a$ $u^{2}=\frac{1}{2} g a$ Using with (a) to find $\cos \theta=\frac{5}{6} ; \theta=34^{\circ}$	M1 A1 M1 A1 M1 A1; A1 (7)
Alt	Projectile approach: $V_{x}=v \cos \theta ; V_{y}^{2}=(v \sin \theta)^{2}+2 g a(1+\cos \theta)$ $\left(\frac{9 a g}{2}\right)=V_{x}^{2}+V_{y}^{2} \Rightarrow\left(\frac{9 a g}{2}\right)-v^{2}=2 g a(1+\cos \theta)-$ M1 A1, then scheme	

($\mathrm{ft}=$ follow through mark)

Question Number	Scheme	Marks
7. ${ }^{(a)}$	$V=\pi \int y^{2} \quad \mathrm{~d} x=\frac{1}{4} \pi \int(x-2)^{4} \mathrm{~d} x$	M1
	$\int(x-2)^{4} \mathrm{~d} x=\frac{1}{5}(x-2)^{5}$	M1 A1
	$V=\frac{8 \pi}{5}$	A1 (4)
	Using $\pi \int x y^{2} \mathrm{~d} x=\frac{1}{4} \pi \int x(x-2)^{4} \mathrm{~d} x$	M1
	Correct strategy to integrate [e.g. substitution, expand, by parts] $\text { [e.g. } \frac{1}{4} \pi \int(u-2)^{4} \mathrm{~d} u \quad ; \frac{1}{4} \pi \int\left(x^{5}-8 x^{4}+24 x^{3}-32 x^{2}+16 x\right) \mathrm{d} x \text {] }$	M1
	$=\frac{1}{4} \pi\left[\frac{2 u^{5}}{5}+\frac{u^{6}}{6}\right] \text { or } \frac{1}{4} \pi\left[\frac{x^{6}}{6}-\frac{8 x^{5}}{5}+6 x^{4}-\frac{32 x^{3}}{3}+8 x^{2}\right]$	M1 A1
	$=\frac{8 \pi}{15} \quad \text { limits need to be used correctly }$	A1 (7)
	$V_{c}(\rho) \bar{x}=\pi(\rho) \int x y^{2} \mathrm{~d} x$ seen anywhere	M1
	$\bar{x}=\frac{1}{3} \mathrm{~cm}\left(^{*}\right) \quad$ no incorrect working seen	A1
	Moments about B: $8 A=10 W-2 W\left(\frac{1}{3}\right)$	M1 A1 A1
	$A=\frac{59 W}{12} \quad(4.9 W)$	M1 A1 (5)
		(16 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left({ }^{*}\right)$ indicates final line is given on the paper $)$
1.

(a) ($\quad T \cos 60^{\circ}=m g \Rightarrow T=2 m g$ * \quad B1
(b) $\quad(\leftrightarrow) T \sin 60^{\circ}=m r \omega^{2}$
[Omission of m is M0]
Attempt at $r=L \sin 60^{\circ}$
M1
$\left(T \sin 60^{\circ}=m L \sin 60^{\circ} \omega^{2}\right)$

$$
\omega=\sqrt{\frac{2 \mathrm{~g}}{L}}
$$

A1
(c) Applying Hooke's Law: $2 m \mathrm{~g}=\frac{\lambda}{\left(\frac{3}{5} L\right)}\left(L-\frac{2}{5} L\right) ; \quad \lambda=3 m \mathrm{~g} \quad$ M1;A1 (2) [L in denominator is M0]
2.
(a) Integration of $-4 \mathrm{e}^{-2 t}$ w.r.t. t to give $v=2 \mathrm{e}^{-2 t} \quad(+c)$ B1

Using initial conditions to find $\mathrm{c}(-1)$ or $v-1=[f(t)]_{0}^{t}$

$$
\begin{equation*}
v=2 \mathrm{e}^{-2 t}-1 \mathrm{~ms}^{-1} \quad \mathrm{~A} 1 \tag{3}
\end{equation*}
$$

(b) Integrating v w.r.t $t ; \quad x=-\mathrm{e}^{-2 t}-t(+c)$

Using $t=0, x=0$ and finding value for $c(c=1)$ M1

Finding t when $v=0 ; \quad t=1 / 2 \ln 2$ or equiv., 0.347
[both f.t. marks dependent on v of form $a \mathrm{e}^{-2 t} \pm b$]

$$
x=1 / 2(1-\ln 2) \mathrm{m} \text { or } 0.153 \mathrm{~m}(\mathrm{awrt}) \quad \mathrm{A} 1
$$

(6)
[For A1, exact form must be two termed answer]
3. (a) $F=\frac{k}{x^{2}} \quad$ [k may be seen as $G m_{1} m_{2}$, for example]

Equating F to $m g$ at $\boldsymbol{x}=\boldsymbol{R}, \quad\left[m \mathrm{~g}=\frac{k}{R^{2}}\right]$
Convincing completion $\left[k=m g R^{2}\right]$ to give $F=\frac{m g R^{2}}{x^{2}} \quad *$
[Note: r may be used instead of x throughout, then $r \rightarrow x$ at end.]
(b) Equation of motion: $\quad(m) a=(-) \frac{(m) g R^{2}}{x^{2}} ; \quad(m) v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{(m) g R^{2}}{x^{2}}$

M1;M1
Integrating: $\quad 1 / 2 v^{2}=\frac{g R^{2}}{x} \quad(+\mathrm{c})$ or equivalent
[S.C: Allow A1 $\sqrt{ }$ if A0 earlier due to " + " only]
Use of $v^{2}=\frac{3 g R}{2}, x=R$ to find $c[c=-1 / 4 \mathrm{~g} R]$ or use in def. int.
[Using $x=0$ is M0]

$$
\left[v^{2}=\frac{2 g R^{2}}{x}-\frac{g R}{2}\right]
$$

Substituting $x=3 R$ and finding $V ; \quad V=\sqrt{\frac{g R}{6}}$
[Using $x=2 R$ is M0]
Alternative in (b)
M1

Work/energy $(-) \int_{R}^{a} \frac{m g R^{2}}{x^{2}} \mathrm{~d} x ;=1 / 2 m v^{2}-1 / 2 m u^{2}$
Integrating: $\left[\frac{m g R^{2}}{x}-\frac{m g R^{2}}{R}\right]=1 / 2 m v^{2}-1 / 2 m \frac{3 g R}{2}$
Final 2 marks as scheme
[Conservation of energy scores 0]
4.

(a) Length of string $=\frac{10}{3} a$	B1

$$
\begin{aligned}
\mathrm{EPE} & =\frac{\frac{1}{2} m g}{2 a}(L-a)^{2} \\
& =\frac{49}{36} m g a
\end{aligned}
$$

(b) Energy equation: $1 / 2 m v^{2}+\frac{\frac{1}{2} m g}{2 a} a^{2}=\left(\frac{49}{36} m g a\right)_{\mathrm{C}}$

$$
v=\frac{2}{3} \sqrt{5 g a} \text { or equivalent }
$$

(c) When string at angle θ to horizontal, length of string $=\frac{2 a}{\sin \theta}$
\Rightarrow Vert. Comp. of $T, T_{\mathrm{V},}=T \sin \theta=\frac{m g}{2 a}\left(\frac{2 a}{\sin \theta}-a\right) \sin \theta$

$$
=\frac{m g}{2}(2-\sin \theta)
$$

(\downarrow) $R+T_{\mathrm{V}}=m g$ and find $\mathrm{R}=\ldots$

$$
\begin{aligned}
\mathrm{R} & =m \mathrm{~g}-\frac{m g}{2}(2-\sin \theta)=\frac{m g}{2} \sin \theta \\
\Rightarrow & R>0(\text { as } \sin \theta>0), \text { so stays on table }
\end{aligned}
$$

[Alternative final 3 marks: As θ increases so T_{V} decreases M1 Initial $T_{\mathrm{V}}($ string at β to hor. $)=\frac{7}{10} m g \quad \mathrm{~A} 1$ $\Rightarrow T_{\mathrm{V}} \leq \frac{7}{10} m g<m \mathrm{~g}$, so stays on table A1]
5.

Applying Hooke's Law correctly : e.g. $T=\frac{48 x}{0.6}$
Equation of motion: (-) $\mathrm{T}=0.2 \ddot{x}$
Correct equation of motion: e.g. $-\frac{48 x}{0.6}=0.2 \ddot{x}$

Writing in form $\ddot{x}=-\omega^{2} x$, and stating motion is SHM
Period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{20}=\frac{\pi}{10} \quad * \quad$ (no incorrect working seen)
[If measure x from B or A, final 2 marks only available if equation of motion is reduced to $\left.\ddot{X}=-\omega^{2} X\right]$
(b) $\max v=a w$ with values substituted; $=0.3 \times 20=6 \mathrm{~ms}^{-1}$
(c) Using $x=0.3 \cos 20 t$ or $x=0.3 \sin 20 T$

Using $x=0.15$ to give either $\cos 20 t=1 / 2$ or $\sin 20 T=1 / 2$
Either $t=\frac{\pi}{60}, \frac{5 \pi}{60} \quad$ or $\quad T=\frac{\pi}{120}$

Complete method for time:

$$
t_{2}-t_{1}, \quad \text { or } \quad \frac{\pi}{10}-2 t_{1}, \quad \text { or } \quad 2\left(\frac{\pi}{40}+T\right)
$$

Time $=\frac{\pi}{15} \mathrm{~s}$ (must be in terms of π)

A1 (5)
[12]

6.
 (a)

Cylinder
Hemisphere S

Masses

$$
\begin{array}{lcc}
(\rho) \pi(2 a)^{2}\left(\frac{3}{2} a\right) & (\rho) \frac{2}{3} \pi a^{3} & (\rho)\left(\frac{16}{3} \pi a^{3}\right) \\
{\left[6 \pi a^{3}\right][18]} & {[2]} & {[16]}
\end{array}
$$

Distance of

$$
1 / 8 a
$$

$$
\frac{3}{8} a \quad \bar{x}
$$

B1B1
CM from O

Moments equation: $6 \pi a^{3}(3 / 4 a)-\frac{2}{3} \pi a^{3}\left(\frac{3}{8} a\right)=\frac{16}{3} \pi a^{3} \bar{X}$

$$
\bar{x}=\frac{51}{64} a
$$

(b)
 G above " A " seen or implied M1 or $m \mathrm{~g} \sin \alpha(G X)=m g \cos \alpha(A X)$ $\tan \alpha=\frac{A X}{X G}=\frac{2 a}{\frac{3}{2} a-\bar{x}}$
$\left[G X=\frac{3}{2} a-\frac{51}{64} a=\frac{45}{64} a, \tan \alpha=\frac{128}{45}\right] \quad \alpha=70.6^{\circ}$
(c) Finding F and $R: R=m g \cos \beta, F=m g \sin \beta$

Using $F=\mu R$ and finding $\tan \beta[=0.8]$ M1

$$
\beta=38.7^{\circ}
$$

A1
7. (a) Energy: $1 / 2 m v^{2}-1 / 2 m u^{2}=m g a \sin \theta$

$$
\begin{equation*}
v^{2}=\frac{3}{2} g a+2 g a \sin \theta \tag{2}
\end{equation*}
$$

A1
(b) Radial equation: $T-m g \sin \theta=m \frac{v^{2}}{a}$

$$
\begin{equation*}
T=\frac{3 m g}{2}(1+2 \sin \theta) \text { any form } \tag{3}
\end{equation*}
$$

A1 is
(c) Setting $T=0$ and solving trig. equation; $(\sin \theta=-1 / 2) \Rightarrow \theta=210^{\circ} *$
(d) Setting $\boldsymbol{v}=\mathbf{0}$ in (a) and solving for θ

$$
\sin \theta=-3 / 4 \text { so not complete circle }
$$

OR Substituting $\theta=270^{\circ}$ in (a); $v^{2}<0$ so not possible to complete
(e) No change in $\mathrm{PE} \Rightarrow$ no change in KE (Cof E) so $v=u$
(f) When string becomes slack, $V^{2}=1 / 2 \mathrm{~g} a[\sin \theta=-1 / 2$ in (a) $]$

Using fact that horizontal component of velocity is unchanged

$$
\begin{aligned}
\sqrt{\frac{g a}{2}} \cos 60^{\circ} & =\sqrt{\frac{3 g a}{2}} \cos \phi \\
\cos \phi & =\sqrt{\frac{1}{12}} \Rightarrow \phi=73.2^{\circ}
\end{aligned}
$$

Question Number	Scheme	Marks
1.	$\begin{aligned} & 1000 \text { r.p.m }=\frac{1000 \times 2 \pi}{60} \mathrm{rad} / \mathrm{s} \\ & v=0.035 \times \frac{1000 \times 2 \pi}{60}=3.67 \mathrm{~ms}^{-1}(3 \mathrm{SF}) \quad \text { M1 their } r \times \text { their } \omega \end{aligned}$	B1 M1 A1 (3 marks)
2.	Extn at bottom $=\frac{a}{\cos \alpha}-a=\frac{2 a}{3}(0.67 a$ or better $)$ Energy: $\quad m g a \tan \alpha=\frac{2 \lambda\left(\frac{2 a}{3}\right)^{2}}{2 a}$ $\begin{array}{lr} 3 m g=\lambda & \text { Second M0 if treated as equilibrium } \\ \text { Third M1 for solving for } \lambda \end{array}$	M1 A1 M1 A1 A1 ft M1 A1 (7 marks)
3. (a)	$\begin{aligned} & m g \sin 30^{\circ}-m x^{2}=m a \\ & \frac{g}{2}-x^{2}=v \frac{\mathrm{~d} v}{\mathrm{~d} x} \text { or } \frac{\mathrm{d}\left(\frac{1}{2} v^{2}\right)}{\mathrm{d} x} \\ & \frac{g x}{2}-\frac{x^{3}}{3}(+C)=\frac{v^{2}}{2} \\ & x=2: g-\frac{8}{3}=\frac{v^{2}}{2} \\ & v=3.8 \mathrm{~ms}^{-1}(3.78) \\ & v=0: \frac{g x}{2}-\frac{x^{3}}{3}=0 \\ & x^{2}=\frac{3 g}{2} \Rightarrow x=3.8,(3.83), \sqrt{\frac{3 g}{2}} \end{aligned}$ Third M1 for attempting to integrate must have integrated for first M1	M1 A1 M1 M1 A1 M1 A1 (7) M1 M1 A1 c.s.o (3) (10 marks)

($\mathrm{ft}=$ follow through mark)

Question Number	Scheme	Marks
4. (a)	$(\uparrow), R=m g$	B1
	$m \frac{4 a}{3} \omega^{2}$ (seen and used)	B1
	$m \frac{4 a}{3} \omega^{2} \leq \frac{3}{5} \mathrm{mg}$	M1
	$\omega^{2} \leq \frac{9 g}{20 a} *$	A1 c.s.o (4)
(b)	$T=\frac{2 m g}{a} \frac{a}{3}=\frac{2 m g}{3}$	B1
	$(\rightarrow), \quad \frac{3}{5} m g+\frac{2 m g}{3} \geq m \frac{4 a}{3} \omega_{\max }^{2}$	M1 A1 f.t
	$\frac{19 g}{20 a}=\omega_{\max }^{2}$	A1
	$(\rightarrow), \quad-\frac{3}{5} m g+\frac{2 m g}{3} \leq m \frac{4 a}{3} \omega_{\min }^{2}$	M1 A1 f.t
	$\frac{g}{20 a}=\omega_{\min }^{2}$	A1 (7)
	If only one answer, must be clear whether max or min for final A1	(11 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper $)$

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper $)$

Question Number	Scheme	Marks
6. (a)	All M marks require correct number of terms with appropriate terms resolved $\begin{aligned} B \text { to } C: \frac{1}{2} m v^{2}-\frac{1}{2} m 20^{2} & =m g \times 50\left(1-\sin 30^{\circ}\right) \\ v & =30 \mathrm{~ms}^{-1}(29.8) \end{aligned}$	M1 A1 A1 (3)
(b)	$\begin{aligned} (\uparrow) \text { at } C, \quad R-m g & =m \frac{890}{50} \\ R & =1900 \mathrm{~N}(1930 \mathrm{~N}) \end{aligned}$	M1 A1 ft A1 (3)
(c)	$\begin{gathered} C \text { to } D: \frac{1}{2} m 890-\frac{1}{2} m w^{2}=m g \times 50\left(1-\cos 30^{\circ}\right) \\ w=28 \mathrm{~ms}^{-1}(27.5) \end{gathered}$	M1 A1 ft A1 (3)
(d)	Before: $\quad R=m g \cos \theta$	B1
	After: $\quad R=m g \cos \theta+m \frac{20^{2}}{50}$	M1 A1
	$\text { Change }=70 \times \frac{20^{2}}{50}=560 \mathrm{~N}$	A1 c.s.o (4)
(e)	Lower speed at $C \Rightarrow \mathrm{R}$ reduced	M1 A1 (2)
		(15 marks)

($\mathrm{ft}=$ follow through mark)

Question Number	Scheme	Marks
7. $\begin{array}{r}(a) \\ \\ \\ (b) \\ \\ (c) \\ \\ \\ \\ \text { (d) }\end{array}$	$\begin{aligned} & (-) \frac{21.6 x}{2}=0.3 \ddot{x} \\ & -36 \mathrm{x}=\ddot{x} \end{aligned}$	M1 A1 M1
	$\begin{equation*} \text { S.H.M., period }=\frac{2 \pi}{\sqrt{36}}=\frac{\pi}{3} * \tag{4} \end{equation*}$	A1 c.s.o.
	At $A: v=a w=1.5 \times 6=9 \mathrm{~ms}^{-1}$	M1 A1 (2)
	$x=a \cos \omega t$	
	$0.75=1.5 \cos 6 t$	M1
	$\frac{\pi}{3}=6 t \Rightarrow t=\frac{\pi}{18}$ (no decimals)	M1 A1 (3)
	$\text { (-) } \frac{21.6 x}{2}=0.5 \ddot{x}$	M1 A1
	$-21.6 x=\ddot{x} \Rightarrow$ S.H.M., $\omega=\sqrt{21.6}$	A1
	At collision: CLM: $0.3 \times 9=0.5 v \Rightarrow v=5.4$	M1 A1 ft
	$a \times \sqrt{21.6}=5.4$	M1
	$a=1.16 \mathrm{~m}(3 \mathrm{SF})$	A1 (7)
		(16 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper)

190 High Holbom London WC1V 7BH
January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: Mechanics

Paper: M3

EDEXCEL
190 High Holborn London WC1V 7BH
January 2005

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: Mechanics
Paper: M3

Question Number	Scheme	Marks
(b)	$\begin{aligned} \int_{0}^{\pi} \frac{1}{2} y^{2} d x & =\int_{0}^{\pi} \frac{1}{2} \sin ^{2} x d x \\ & =\frac{1}{4} \int_{0}^{\pi}(1-\cos 2 x) d x \\ & =\frac{1}{4}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi} \\ & =\pi / 4 \\ \bar{y}=\frac{\pi / 4}{\pi} \int_{0}^{\pi} x d x & =\frac{\frac{\pi}{4}}{2} \\ & =\frac{\pi}{18} \end{aligned}$	71 MI A AI 71 Al (6)
	$\begin{aligned} 1 \\ \cdots-\frac{1}{y} \\ 100 \end{aligned} \quad \tan \theta=\frac{\pi / 2}{\bar{y}}$	$M 1$ $\text { A } \triangle$
	$\theta=75.96^{\circ}$	Al (3)

190 High Holborn London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education
Subject: Mechanics
Paper: M3

190 High Holbom London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education
Subject: Mechanics
Paper: M3

EDEXCEL
190 High Holbom London WC1V 7BH
January 2005
Advanced Subsidiary/Advanced Level
General Certificate of Education
Subject: Mechanics
Paper: M3

Final Version
June 2005

6679 Mechanics M3
 Mark Scheme

The following abbreviations are used in this scheme.
M A method mark. These are awarded for 'knowing a method and attempting to apply it'.
A An accuracy mark. Can only be awarded if the relevant method mark(s) have been earned.
B These marks are independent of method marks.
cso correct solution only. There must be no errors in this part of the question to obtain this mark.
cao correct answer only.
ft follow through. The scheme or marking guidance will specify what is to be followed through.
oe or equivalent.
awrt answers which round to
The second mark is dependent on gaining the first mark.

N2L Newton's second law
LM Linear momentum
HL Hooke's Law.
\rightarrow, \downarrow etc. Resolving in the appropriate direction
$\mathrm{M}(A)$ Taking moments about A.

* The answer is printed on the paper.

LHS Left hand side of an equation
RHS Right hand side of an equation
EPE Elastic potential energy

Question Number	Scheme	Marks
2.	(a) anything in ratio $2: 1: 3$ $\mathrm{M}(\mathrm{O})$ $\begin{aligned} 2 \times \frac{1}{2} a & =3 \bar{y} \\ \bar{y} & =\frac{1}{3} a \end{aligned}$ (b) $\begin{aligned} \mathrm{M}(A) \quad M g \times \frac{1}{3} a \sin \theta & =\frac{1}{2} M g \times a \cos \theta \\ \tan \theta & =\frac{3}{2} \\ \theta & \approx 56^{\circ} \end{aligned}$ Methods involving the location of the combined centre of mass of C and P are considered on the next page.	B1 M1 A1 (4) M1 Al=A1 M1 A1 (5) [9]

Question Number	Scheme	Marks
3.	(a) Elastic energy when P is at $X: \quad E=\frac{4 m g\left(\frac{2}{3} l\right)^{2}}{2 l}+\frac{4 m g\left(\frac{4}{3} l\right)^{2}}{2 l} \quad\left(=\frac{40 m g l}{9}\right)$ $\begin{aligned} \frac{1}{2} m V^{2}+2 \times \frac{4 m g l^{2}}{2 l} & =\frac{4 m g\left(\frac{2}{3} l\right)^{2}}{2 l}+\frac{4 m g\left(\frac{4}{3} l\right)^{2}}{2 l} \\ \frac{1}{2} V^{2}+4 g l & =\frac{8}{9} g l+\frac{32}{9} g l \\ V^{2} & =\frac{8 g l}{9} \\ V & =\left(\frac{8 g l}{9}\right)^{\frac{1}{2}} \end{aligned}$ $\text { solving for } V^{2}$ or exact equivalents (b) The maximum speed occurs when $a=0$ At M the particle is in equilibrium (the sum of the forces is zero) $\Rightarrow a=0$ The alternative method using Newton's Second Law is considered on the next page.	M1 A1 $\mathrm{M} 1 \mathrm{Al}=\mathrm{A} 1 \mathrm{ft}$ M1 A1 (7) B1 (2) [9]

Question Number	Scheme	Marks
3.	Alternative using Newton's second law. (a) HL $\quad T_{1}=\frac{4 m g(l+x)}{l}, \quad T_{2}=\frac{4 m g(l-x)}{l}$ N2L $m \ddot{x}=T_{2}-T_{1}=-\frac{8 m g}{l} x$ This is SHM, centre M $a=\frac{l}{3}, \quad \omega^{2}=\frac{8 g}{l}$ $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \Rightarrow v^{2}=\frac{8 g}{l}\left(\frac{l^{2}}{9}-x^{2}\right)$ Depends on showing SHM $\text { At } M, x=0, \quad V^{2}=\frac{8 g l}{9}, V=\left(\frac{8 g l}{9}\right)^{\frac{1}{2}}$ or exact equivalents (b) The particle is performing SHM about the mid-point of AB . The maximum speed occurs at the centre of the oscillation (when $x=0$)	M1 A1 A1, A1ft M1 M1, A1 (7) B1 (2) [9]

Question Number	Scheme	Marks
5.	Alternatives to 5(c)	
	From P to C	
	$v_{P}^{2}=2 g a\left(\frac{3}{4}-\frac{1}{2}\right)=\frac{g a}{2}$	
	$\frac{1}{2} m w^{2}-\frac{1}{2} m\left(\frac{g a}{2}\right)=m g(\underline{a+a \cos \theta})$	M1 A1 A1
	$\begin{equation*} w^{2}-\frac{g a}{2}=2 m g a\left(1+\frac{1}{2}\right) \Rightarrow w=\left(\frac{7 g a}{2}\right)^{\frac{1}{2}} \tag{4} \end{equation*}$	$\mathrm{A} 1$
	Alternatives using projectile motion from P	
	$\begin{gathered} v_{P}=\left(\frac{g a}{2}\right)^{\frac{1}{2}}, \text { as above } \\ \downarrow \quad u_{y}=\left(\frac{g a}{2}\right)^{\frac{1}{2}} \sin 60^{\circ}=\left(\frac{3 g a}{8}\right)^{\frac{1}{2}} \\ \downarrow \quad v_{y}^{2}=u_{y}^{2}+2 g \times \frac{3 a}{2}==\frac{27 g a}{8} \end{gathered}$	M1, A1
	$\rightarrow \quad u_{x}=\left(\frac{g a}{2}\right)^{\frac{1}{2}} \cos 60^{\circ}=\left(\frac{g a}{8}\right)^{\frac{1}{2}}$	A1
	$w^{2}=u_{x}^{2}+v_{y}^{2}=\frac{g a}{8}+\frac{27 g a}{8}=\frac{7 g a}{2} \Rightarrow w=\left(\frac{7 g a}{2}\right)^{\frac{1}{2}}$	A1 (4)
	There are also longer projectile methods using time of flight	
	In outline, solving $\frac{3 a}{2}=\left(\frac{3 g a}{8}\right)^{\frac{1}{2}} t+\frac{1}{2} g t^{2}$ gives $t=\left(\frac{3 a}{2 g}\right)^{\frac{1}{2}}$,	
	then, using $v=u+a t$ gives $v_{y}=\left(\frac{3 g a}{8}\right)^{\frac{1}{2}}+g\left(\frac{3 a}{2 g}\right)^{\frac{1}{2}}=\left(\frac{27 g a}{8}\right)^{\frac{1}{2}}$, then as before.	M1 A1

Question Number	Scheme	Marks
1.	$\begin{array}{ccc}\text { (a) } \rightarrow \quad \begin{array}{cc}F=T \sin 60^{\circ} \quad \uparrow \quad T \cos 60^{\circ}=0.8 g & \text { both } \\ {\left[\text { or } Z \quad F \cos 60^{\circ}=0.8 g \cos 30^{\circ}\right]}\end{array} & \text { accept } 13.6\end{array}$ (b) $\quad T=\frac{0.8 g}{\sin 30^{\circ}}(=15.68) \quad$ allow in (a) HL $\quad 15.68=\frac{24 \times x}{1.2} \Rightarrow x \approx 0.78(\mathrm{~cm})$ accept 0.784 (c) $\quad E=\frac{24 \times x^{2}}{2 \times 1.2} \approx 6.1(\mathrm{~J})$ accept 6.15	M1 (M2) M1 A1 (3) M1 M1 A1 (3) M1 A1ft (2) Total 8 marks
2.	(a) $\begin{aligned} \frac{\mathrm{d} v}{\mathrm{~d} t} & =2 \sin \frac{1}{2} t \Rightarrow v=A-4 \cos \frac{1}{2} t \\ v=4, t & =0 \Rightarrow 4=A-4 \Rightarrow A=8 \\ v & =8-4 \cos \frac{1}{2} t \end{aligned}$ (b) $\begin{array}{cc} \int \ldots\left(8-4 \cos \frac{1}{2} t\right) \mathrm{d} t=8 t-8 \sin \frac{1}{2} t & \mathrm{ft} \text { constants } \\ {[\ldots]_{0}^{\pi / 2}=4(\pi-\sqrt{ } 2)} & \text { awrt } 6.9 \end{array}$	M1 A1 M1 A1 (4) M1 A1ft M1 A1 (4) Total 8 marks

Question Number	Scheme	Marks
3.	(a) N2L $\quad m a=-\frac{c m}{x^{2}}$ $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1}{2} v^{2}\right)=-\frac{c}{x^{2}} \Rightarrow \frac{1}{2} v^{2}=A+\frac{c}{m} \\ & v^{2}=B+\frac{2 c}{m} \\ & x=R, v=U \quad \Rightarrow \quad B=U^{2}-\frac{2 c}{R} \end{aligned}$ ignore A Leading to $v^{2}=U^{2}+2 c\left(\frac{1}{x}-\frac{1}{R}\right) *$ (b) $\frac{1}{2}\left[\frac{1}{2} m U^{2}\right]=\frac{1}{2} m\left[U^{2}+2 c\left(\frac{1}{2 R}-\frac{1}{R}\right)\right]$ Leading to $\quad c=\frac{1}{2} R U^{2}$	B1 M1 A1 M1 A1 (5) M1 A1 A1 (3) Total 8 marks
4.	(a) $\begin{gather*} 5 M \bar{x}=3 M \times \frac{h}{2}+2 M\left(h+\frac{3}{8} r\right) \\ 5 \bar{x}=\frac{3 h}{2}+2 h+\frac{3}{4} r=\frac{7 h}{2}+\frac{3}{4} r \\ \bar{x}=\frac{14 h+3 r}{20} * \tag{5} \end{gather*}$ (b) $\tan \alpha=\frac{20 r}{14 h+3 r}=\frac{4}{3}$ Leading to $h=\frac{6}{7} r$	M1 A2(1,0) M1 A1 M1 A1 M1 A1 (4) Total 9 marks

Question Number	Scheme	Marks
5.	(a) HL $\quad T=m g=\frac{\lambda \times \frac{1}{4} l}{l} \Rightarrow \lambda=4 m g$	M1 A1 (2)
	(b) N 2 L $\begin{aligned} m g-T & =m \ddot{x} \\ m g-\frac{4 m g\left(\frac{1}{4} l+x\right)}{l} & =m \ddot{x} \\ \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} & =-\frac{4 g}{l} \times * \end{aligned}$	M1 M1 A1 M1 A1 (5)
	(c) $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)=\frac{4 g}{l}\left(\frac{l^{2}}{4}-\frac{l^{2}}{16}\right)$ Leading to $v=\frac{1}{2} \sqrt{ }(3 g l)$ or energy, $\frac{1}{2} \frac{4 m g \cdot l^{2} / 16}{l}=\frac{1}{2} m v^{2}+m g \cdot \frac{3 l}{4}$ for the first M1 A1 in (c)	M1 A1 M1 A1 (4)
	(d) P first moves freely under gravity, then (part) SHM.	B1 B1 (2) Total 13 marks

J une 2006
 6679 Mechanics M3
 Mark Scheme

Question Number	Scheme	Marks
1.	Use of $(\pi) \int y^{2} \mathrm{~d} x \times \bar{x}=(\pi) \int x y^{2} \mathrm{~d} x$ $\begin{array}{r} \int x \mathrm{~d} x \times \bar{x}=\int x^{2} \mathrm{~d} x \\ {\left[\frac{1}{2} x^{2}\right]_{\ldots}^{\cdots} \times \bar{x}=\left[\frac{1}{3} x^{3}\right]_{\ldots}^{\cdots}} \end{array}$ Using limits 0 and 4 $\begin{aligned} \frac{16}{2} \times \bar{x} & =\frac{64}{3} \\ \bar{x} & =\frac{8}{3} \end{aligned}$	M1 $\mathrm{A} 1=\mathrm{A} 1$ M1 A1 (5)
2.	(a) Small Hemisphere Bowl Large Hemisphere Mass ratios $\quad \frac{2}{3} \pi\left(\frac{a}{2}\right)^{3} \quad \frac{2}{3} \pi \frac{7 a^{3}}{8} \quad \frac{2}{3} \pi a^{3}$ Anything in the ratio $1: 7: 8$ $\bar{x} \quad \frac{3}{16} a \quad \bar{x} \quad \frac{3}{8} a$	B1 B1
		M1 A1 A1 (5) B1 B1
	$\begin{gathered} M \times \frac{45}{112} a+k M \times \frac{3}{16} a=(k+1) M \times \frac{17}{48} a \\ \text { Leading to } \quad k=\frac{2}{7} \end{gathered}$	M1 A1 A1 (5) [10]

Question Number	Scheme	Marks
3.	(a) $\begin{aligned} a & =0.1 \\ \frac{2 \pi}{\omega}=\frac{1}{5} & \Rightarrow \omega=10 \pi \\ F_{\max } & =m a \omega^{2} \\ & =0.2 \times 0.1 \times(10 \pi)^{2} \\ & \approx 19.7 \quad(\mathrm{~N}) \end{aligned}$ cao (b) $a^{\prime}=0.2, \quad \omega^{\prime}=10 \pi$ $\begin{gathered} v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)=100 \pi^{2}\left(0.2^{2}-0.1^{2}\right) \quad\left(=3 \pi^{2} \approx 29.6 \ldots\right) \\ v \approx 5.44 \quad\left(\mathrm{~ms}^{-1}\right) \end{gathered}$ cao If answers are given to more than 3 significant figures a maximum of one A mark is lost in the question.	B1 M1 A1 M1 M1 A1 (6) B1ft, B1ft M1 A1 A1 (5) [11]
4.	Eliminating R $\begin{aligned} & \left(\frac{3}{4}=\frac{9 a}{8 r} \Rightarrow r=\frac{3}{2} a\right) \\ & h=\frac{r}{\tan \alpha}=\frac{3 a}{2} \times \frac{4}{3}=2 a \end{aligned}$	B1 M1 A1 M1 A1 A1 M1 A1 M1 A1 (11)

Question Number	Scheme	Marks
6.	(a)	
	Parabola -----------------	B1
	\qquad	B1
	Points	B1 (3)
	(b) Identifying the minimum point of the parabola and 5 as the end points.	M1
	$2<t<5$	A1 (2)
	(c) Splitting the integral into two part, with limits 0 and 4 , and 4 and 5 , and	
	$\int_{0}^{4} 3 t(t-4) \mathrm{d} t=\left[t^{3}-6 t^{2}\right]_{0}^{4}=-32 \text { and } \int_{4}^{5} 3 t(t-4) \mathrm{d} t=\left[t^{3}-6 t^{2}\right]_{4}^{5}=7$	A1
	Both $\text { Total distance }=39 \quad(\mathrm{~m})$	A1
	cso	(3)
	(d) $\quad \int_{5}^{t_{1}} \frac{75}{t} \mathrm{~d} t=32-7$	M1 A1
	$75[\ln t]_{5}^{t_{1}}=25$	A1
	$\ln \frac{t_{1}}{5}=\frac{1}{3} \Rightarrow t_{1}=5 \mathrm{e}^{\frac{1}{3}}$	M1
	≈ 6.98	A1
	cao	
		[13]

Mark Scheme (Results) J anuary 2007

GCE

GCE Mathematics

Mechanics M3 (6679)

J anuary 2007
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
1.	(a) Maximum speed when accel. $=0$ (o.e.) (b) $\frac{1}{12}(30-x)=v \frac{\mathrm{~d} v}{\mathrm{~d} x} \quad(\text { acceln }=\ldots+\text { attempt to integrate })$ Use of $v \frac{\mathrm{~d} v}{\mathrm{~d} x}: \quad \frac{v^{2}}{2}=\frac{1}{12}\left(30 x-\frac{x^{2}}{2}\right)(+c)$ Substituting $x=30, v=10$ and finding $c(=12.5)$, or limits $v^{2}=25+5 x-\frac{1}{12} x^{2} \text { (o.e.) }$ (a) Allow "acceln >0 for $x<30$, acceln <0 for $x>30$ " Also "accelerating for $x<30$, decelerating for $x>30$ " But "acceln <0 for $x>30$ " only is B0 (b) $1^{\text {st }} \mathrm{M} 1$ will be generous for wrong form of acceln (e.g. $\left.\mathrm{d} v / \mathrm{d} x\right)$! $3{ }^{\text {rd }}$ M1 If use limits, they must use them in correct way with correct values Final A1. Have to accept any expression, but it must be for v^{2} explicitly (not $1 / 2 v^{2}$), and if in separate terms, one can expect like terms to be collected. Hence answer in form as above, or e.g. $\frac{1}{12}\left(300+60 x-x^{2}\right)$; also $100-\frac{1}{12}(30-x)^{2}$	(1) M1 \downarrow M1 A1 \downarrow M1 A1 (5)

3.
(a) E.P.E. $=\frac{1}{2} \frac{3.6 m g}{a} x^{2}=\frac{1}{2} \frac{3.6 m g}{a}\left(\frac{a}{3}\right)^{2}$

$$
=\underline{0.2 \mathrm{mga}}
$$

(b) \quad Friction $=\mu m g \Rightarrow$ work done by friction $=\mu m g\left(\frac{4 a}{3}\right)$

Work-energy: $\frac{1}{2} \mathrm{~m} .2 \mathrm{ga}=\mu \mathrm{mgd}+0.2 \mathrm{mga}$
(3 relevant terms)

$$
\text { Solving to find } \mu: \quad \mu=0.6
$$

(b) $1^{\text {st }} \mathrm{M} 1$: allow for attempt to find work done by frictional force (i.e. not just finding friction).
$2^{\text {nd }}$ M1: "relevant" terms, i.e. energy or work terms!
A1 f.t. on their work done by friction
4.
(a) Energy: $\frac{1}{2} m \cdot 3 a g-\frac{1}{2} m v^{2}=m g a(1+\cos \theta)$

$$
v^{2}=a g(1-2 \cos \theta)
$$

A1
(3)

M1 A1

A1 cso

$$
\begin{gathered}
\sin ^{2} \theta=\frac{8}{9}(\text { or } \theta=70.53, \sin \theta=0.943) \text { and solve for } h(\text { as } k a) \\
h=\frac{4}{27} a \text { or } 0.148 a(\text { awrt })
\end{gathered}
$$

OR consider energy: $\frac{1}{2} m(v \cos \theta)^{2}+m g h=\frac{1}{2} m v^{2} \quad$ (3 non-zero terms)
Sub for v, θ and solve for h

$$
h=\underline{\frac{4}{27} a} \text { or } 0.148 a \text { (awrt) }
$$

M1 A1

(c) Using $T=0$ to find $\cos \theta$

Hence height above $A=\underline{\frac{4}{3} a}$ Accept $1.33 a$ (but must have $3+$ s.f.)

$$
v^{2}=\frac{1}{3} a g \quad(\text { o.e. })
$$

f.t. using $\cos \theta=\frac{1}{3}$ in v^{2}
consider vert motion: $(v \sin \theta)^{2}=2 g h$
(with v resolved)

A1

M1 A1

6.
(a) Moments: $\pi \int_{1}^{2} x y^{2} \mathrm{~d} x=V \bar{x}$ or $\int_{1}^{2} x y^{2} \mathrm{~d} x=\bar{x} \int_{1}^{2} y^{2} \mathrm{~d} x$

$$
\begin{align*}
& \int_{1}^{2} y^{2} \mathrm{~d} x=\int_{1}^{2} \frac{1}{4 x^{4}} \mathrm{~d} x=\left[-\frac{1}{12 x^{3}}\right]_{1}^{2} \quad\left(=\frac{7}{96}\right) \tag{either}\\
& \int_{1}^{2} x y^{2} \mathrm{~d} x=\int_{1}^{2} \frac{1}{4 x^{3}} \mathrm{~d} x=\left[-\frac{1}{8 x^{2}}\right]_{1}^{2} \quad\left(=\frac{3}{32}\right)
\end{align*}
$$

Solving to find $\bar{X}\left(=\frac{9}{7}\right) \quad \Rightarrow$ required dist $=\frac{9}{7}-1=\frac{2}{7} \mathrm{~m}(*)$

Allow distances to be found from different base line if necessary
7.
(a)

(b)

$$
\begin{gather*}
T=\frac{39.2}{0.8}(x+0.05) \\
m g-T=m a \\
0.25 \mathrm{~g}-\frac{39.2}{0.8}(x+0.05)=0.25 \ddot{x} \text { (or equivalent) } \\
\ddot{x}=-196 x \\
\text { SHM with period } \frac{2 \pi}{\omega}=\frac{2 \pi}{14}=\frac{\pi}{7} \mathrm{~s} \quad(*) \tag{*}
\end{gather*}
$$

(c)

$$
\begin{aligned}
& v=14 \sqrt{ }\left\{(0.1)^{2}-(0.05)^{2}\right\} \\
= & 1.21(24 \ldots) \approx \underline{1.21 \mathrm{~m} \mathrm{~s}^{-1}}(3 \text { s.f. }) \text { Accept } 7 \sqrt{ } 3 / 10
\end{aligned}
$$

(d) Time T under gravity $=\frac{1.21 . .}{\mathrm{g}}(=0.1237 \mathrm{~s})$

$$
\text { Complete method for time } T^{\prime} \text { from } B \text { to slack. }
$$

[\uparrow e.g. $\frac{\pi}{28}+t$, where $0.05=0.1 \sin 14 t$
OR T^{\prime}, where $\left.-0.05=0.1 \cos 14 T^{\prime}\right]$

$$
T^{\prime \prime}=0.1496 \mathrm{~s}
$$

Total time $=T+T^{\prime}=\underline{0.273 \mathrm{~s}}$
(b) $1^{\text {st }}$ M1 must have extn as $x+k$ with $k \neq 0$ (but allow M1 if e.g. $x+0.15$), or must justify later

For last four marks, must be using \ddot{x} (not a)
(c) Using $x=0$ is M0
(d) M1 - must be using distance for when string goes slack. Using $x=-0.1$ (i.e. assumed end of the oscillation) is M0

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Mechanics M3 (6679)

J une 2007
6679 Mechanics M3
Mark Scheme

Question Number	Scheme		Marks
2.	(a) Base Cylinder Container Mass ratios πh^{2} $2 \pi h^{2}$ $3 \pi h^{2}$ \bar{y} 0 $\frac{h}{2}$ \bar{y}	Ratio of $1: 2: 3$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	$\begin{align*} 3 \pi h^{2} \times \bar{y} & =2 \pi h^{2} \times \frac{h}{2} \\ \bar{y} & =\frac{1}{3} h * \tag{5} \end{align*}$		M1 A1 A1
	(b) Liquid Container Total Mass ratios M M $2 M$ \bar{y} $\frac{h}{2}$ $\frac{h}{3}$ \bar{y}	Ratio of 1:1:2	B1 B1
	$\begin{aligned} 2 M \times \bar{y} & =M \times \frac{h}{2}+M \times \frac{h}{3} \\ \bar{y} & =\frac{5}{12} h \end{aligned}$		M1 A1 A1 (5) [10]

Question Number	Scheme	Marks
5.	(a) $\begin{gathered} \ddot{x}=-\omega^{2} x \Rightarrow 1=\omega^{2} \times 0.04 \quad(\Rightarrow \omega=5) \\ T=\frac{2 \pi}{5} \end{gathered}$ awrt 1.3 (b) $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \Rightarrow 0.2^{2}=5^{2}\left(a^{2}-0.04^{2}\right) \quad$ ft their ω $a=\frac{\sqrt{ } 2}{25} \quad$ accept exact equivalents or awrt 0.057 (c) Using $x=a \cos \omega t$ $\begin{aligned} & \frac{1}{2} a=a \cos \omega t \\ & 5 t=\frac{\pi}{3} \\ & t=\frac{\pi}{15} \\ & T^{\prime}=4 t=\frac{4 \pi}{15} \end{aligned}$ ft their ω awrt 0.84	M1 A1 A1 (3) M1 A1ft A1 (3) M1 A1ft A1 M1 A1 (5) [11]
	Alternative to (c) Using $x=a \sin \omega t$ $\begin{aligned} \frac{1}{2} a & =a \sin \omega t \\ 5 t & =\frac{\pi}{6} \\ t & =\frac{\pi}{30} \\ T^{\prime} & =T-4 t=\frac{4 \pi}{15} \end{aligned}$ ft their ω	M1 A1ft A1 M1 A1 (5)

Mark Scheme (Results) J anuary 2008

GCE

GCE Mathematics (6679/ 01)

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline \multirow[t]{2}{*}{1.(a)

(b)} \& \[
$$
\begin{aligned}
& T \text { or } \frac{\lambda \times e}{l}=m g \quad(\text { even } T=m \text { is M1, A0, A0 sp case) } \\
& \quad \frac{\lambda \times 0.16}{0.4}=2 g \\
& \Rightarrow \lambda=\underline{49 \mathrm{~N}} \quad \text { or } 5 \mathrm{~g}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| (3) |

\hline \& \& | M1 |
| :--- |
| A1ft |
| A1 (3) |

\hline 2. \& | $m^{\prime} a^{\prime}= \pm \frac{16}{5 x^{2}}$, with acceleration in any form (e.g. $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}, v \frac{\mathrm{~d} v}{\mathrm{~d} x}, \frac{\mathrm{~d} v}{\mathrm{~d} t}$ or |
| :--- |
| a) |
| Uses $a=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ to obtain $\mathrm{k} v \frac{\mathrm{~d} v}{\mathrm{~d} x}= \pm \mathrm{k}^{\prime} \frac{32}{x^{2}}$ |
| Separates variables, $\quad \mathrm{k} \int v \mathrm{~d} v=\mathrm{k} \int \frac{32}{x^{2}} \mathrm{~d} x$ |
| Obtains $\quad \frac{1}{2} v^{2}=\mp \frac{32}{x}(+C) \quad$ or equivalent e.g. $\frac{0.1}{2} v^{2}=-\frac{16}{5 x}(+C)$ |
| Substituting $\mathrm{x}=2$ if + used earlier or -2 if - used in d.e. |
| $x=2, v= \pm 8 \Rightarrow 32=-16+C \Rightarrow C=48$ (or value appropriate to their correct equation) $v=0 \Rightarrow \frac{32}{x}=48 \Rightarrow x=\frac{2}{3} \mathrm{~m}$ |
| (N.B. $-\frac{2}{3}$ is not acceptable for final answer) | \& | B1 |
| :--- |
| M1 |
| dM1 |
| A1 |
| M1 A1 |
| M1 A1 cao |

\hline \& | N.B $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{2} \mathrm{~m} v^{2}\right)=\frac{16}{5 x^{2}}$, is also a valid approach. |
| :--- |
| Last two method marks are independent of earlier marks and of each other | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
3.(a)	Large cone small cone S Vol. $\frac{1}{3} \pi(2 r)^{2}(2 h)$ $\frac{1}{3} \pi r^{2} h$ $\frac{7}{3} \pi r^{2} h$ C of M (accept ratios $8: 1: 7)$ $\frac{1}{2} h$, $\frac{5}{4} h$ $\bar{x}$$\quad$ (or equivalent)	B1 B1, B1 M1 A1
(b)	$\begin{aligned} & \tan \theta=\frac{2 r}{\bar{x}}=\frac{2 r}{\frac{11}{28} h},=\frac{2 r}{\frac{11}{14} r}=\frac{28}{11} \\ & \theta \approx 68.6^{\circ} \text { or } 1.20 \text { radians } \end{aligned}$ (Special case - obtains complement by using $\tan \theta=\frac{2 r}{\bar{x}}$ giving 21.4° or .374 radians M1A0A0)	$\mathrm{M} 1, \mathrm{~A} 1$ A1 (3) 8
	Centres of mass may be measured from another point (e.g. centre of small circle, or vertex) The Method mark will then require a complete method (Moments and subtraction) to give required value for \bar{x}). However B marks can be awarded for correct values if the candidate makes the working clear.	

4. (a)	Energy equation with at least three terms, including K.E term $\begin{aligned} & \frac{1}{2} m V^{2}+. . \\ & \quad+. . \frac{1}{2} \cdot \frac{2 m g}{a} \cdot \frac{a^{2}}{16},+m g \cdot \frac{1}{2} a \cdot \sin 30,=\frac{1}{2} \cdot \frac{2 m g}{a} \cdot \frac{9 a^{2}}{16} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1, A1, A1 } \\ & \text { dM1 A1 (6) } \end{aligned}$
(b)	Using point where velocity is zero and point where string becomes slack: $\begin{aligned} & \frac{1}{2} m w^{2}= \\ & \quad \frac{1}{2} \cdot \frac{2 m g}{a} \cdot \frac{9 a^{2}}{16},-m g \cdot \frac{3 a}{4} \cdot \sin 30 \\ & \Rightarrow w=\sqrt{\frac{3 a g}{8}} \end{aligned}$ Alternative (using point of projection and point where string becomes slack): $\begin{gathered} \frac{1}{2} m w^{2}-\frac{1}{2} m V_{1}^{2},=\frac{m g a}{16}-\frac{m g a}{8} \\ \text { So } w=\sqrt{\frac{3 a g}{8}} \end{gathered}$	M1 A1, A1 A1 (4) M1,A1 A1 A1
	In part (a) DM1 requires EE, PE and KE to have been included in the energy equation. If sign errors lead to $V^{2}=-\frac{g a}{2}$, the last two marks are M0 A0 In parts (a) and (b) A marks need to have the correct signs In part (b) for M1 need one KE term in energy equation of at least $\mathbf{3}$ terms with distance $\frac{3 a}{4}$ to indicate first method, and two KE terms in energy equation of at least $\mathbf{4}$ terms with distance $\frac{a}{4}$ to indicate second method. SHM approach in part (b). (Condone this method only if SHM is proved) Using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with $\omega^{2}=\frac{2 g}{a}$ and $x= \pm \frac{a}{4}$. Using ' a ' $=\frac{a}{2}$ to give $\quad w=\sqrt{\frac{3 a g}{8}}$.	M1 A1 A1 A1

5.(a)	$\frac{m v^{2}}{r}=\mu N,=\mu m g$ $\mu=\frac{v^{2}}{r g}=\frac{21^{2}}{75 \times 9.8}=0.6$	M1, A1 A1 (3)
(b)	(b) $\begin{aligned} & \mathrm{R}(\uparrow) R \cos \alpha, \mp 0.6 R \sin \alpha=m g \\ & \quad \Rightarrow R\left(\frac{4}{5}-\frac{3}{5} \cdot \frac{3}{5}\right)=m g \Rightarrow R=\frac{25 m g}{11} \end{aligned}$	$\mathrm{M} 1, \mathrm{~A} 1, \mathrm{~A} 1$ A1 (4)
(c)	$\begin{array}{r} \mathrm{R}(\leftarrow) R \sin \alpha, \pm 0.6 R \cos \alpha=\frac{m v^{2}}{r} \\ v \approx 32.5 \mathrm{~m} \mathrm{~s}^{-1} \tag{5} \end{array}$	$\mathrm{M} 1, \mathrm{~A} 1, \mathrm{~A} 1$ dM1 A1cao
	In part (b) M1 needs three terms of which one is mg If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is awarded M1 A0 A1 In part (c) M1 needs three terms of which one is $\frac{m v^{2}}{r}$ or $m r \omega^{2}$ If $\cos \alpha$ and $\sin \alpha$ are interchanged in equation this is also awarded M1 A0 A1 If they resolve along the plane and perpendicular to the plane in part (b), then attempt at $R-m g \cos \alpha=\frac{m v^{2}}{r} \sin \alpha$, and $0.6 R+m g \sin \alpha=\frac{m v^{2}}{r} \cos \alpha$ and attempt to eliminate v Two correct equations Correct work to solve simultaneous equations Answer In part (c) Substitute R into one of the equations Substitutes into a correct equation (earning accuracy marks in part (b)) Uses $R=\frac{25 \mathrm{mg}}{11} \quad$ (or $\frac{25 \mathrm{mg}}{29}$) Obtain $v=32.5$	M1 A1 A1 A1 M1 A1 A1 M1A1

GCE
Edexcel GCE
Mathematics
Mechanics 3 M3 (6679

J une 2008

Mark Scheme (Final)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

J une 2008
6679 Mechanics M3
Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline \multirow[t]{5}{*}{Q1(a)

(b)} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& \mathrm{R} \text { EPE stored }=\frac{1}{2} \frac{\lambda}{L}\left(\frac{1}{2} L\right)^{2} \quad\left(=\frac{\lambda L}{8}\right) \\
& \mathrm{KE} \text { gained }=\frac{1}{2} m 2 g L \quad(=m g L) \\
& \mathrm{EPE}=\mathrm{KE} \Rightarrow \frac{\lambda L}{8}=\operatorname{mg} L \quad \text { i.e. } \lambda=8 m g^{*}
\end{aligned}
$$} \& B1

\hline \& \& B1

\hline \& \& M1A1cso

\hline \& \& (4)

\hline \& \& M1

\hline \multirow{3}{*}{(b)} \& \multirow[t]{3}{*}{$$
\begin{gathered}
\text { EPE }=\mathrm{GPE}+\mathrm{KE} \\
\frac{1}{2} \frac{8 m g}{L}\left(\frac{1}{2} L\right)^{2}=\frac{8 m g L}{8}=m g \frac{L}{2}+\frac{1}{2} m u^{2} \\
\frac{m g L}{2}=\frac{m}{2} u^{2} \quad \therefore u=\sqrt{g L}
\end{gathered}
$$} \& A1A1

\hline \& \& M1A1 (5)

\hline \& \& 9 Marks

\hline
\end{tabular}

Mark Scheme (Results) J anuary 2009

GCE

GCE Mathematics (6679/ 01)

J anuary 2009
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
3	$\omega=\frac{80 \times 2 \pi}{60} \mathrm{rad} \mathrm{~s}^{-1}\left(=\frac{8 \pi}{3} \approx 8.377 \ldots\right)$ Accept $v=\frac{16 \pi}{75} \approx 0.67 \mathrm{~ms}^{-1}$ as equivalent $(\uparrow) R=m g$ For least value of $\mu \quad(\leftarrow) \mu m g=m r \omega^{2}$ $\mu=\frac{0.08}{9.8} \times\left(\frac{8 \pi}{3}\right)^{2} \approx 0.57$ accept 0.573	B1 B1 M1 A1=A1 M1 A1 (7) [7]
(a) (b)	$\begin{gathered} a=8 \\ T=\frac{25}{2}=\frac{2 \pi}{\omega} \Rightarrow \omega=\frac{4 \pi}{25}(\approx 0.502 \ldots) \\ v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \Rightarrow v^{2}=\left(\frac{4 \pi}{25}\right)^{2}\left(8^{2}-3^{2}\right) \\ v=\frac{4 \pi}{25} \sqrt{ } 55 \approx 3.7 \quad\left(\mathrm{mh}^{-1}\right) \\ x=a \cos \omega t \Rightarrow 3=8 \cos \left(\frac{4 \pi}{25} t\right) \\ t \approx 2.3602 \ldots \\ \text { time is } 1222 \end{gathered}$ ft their a, ω awrt 3.7 ft their a, ω	B1 M1 A1 M1 A1ft M1 A1 (7) M1 Alft M1 A1 (4) [11]

Question Number	Scheme	Marks
5 (a)	Let x be the distance from the initial position of B to C $\begin{aligned} \text { GPE lost } & =\text { EPE gained } \\ m g x \sin 30^{\circ} & =\frac{6 m g x^{2}}{2 a} \end{aligned}$ Leading to $x=\frac{a}{6}$ $\begin{equation*} A C=\frac{7 a}{6} \tag{5} \end{equation*}$	$\mathrm{M} 1 \mathrm{~A} 1=\mathrm{A} 1$ M1 A1
(b)	The greatest speed is attained when the acceleration of B is zero, that is where the forces on B are equal. $\begin{gathered} \text { (®) } \quad T=m g \sin 30^{\circ}=\frac{6 m g e}{a} \\ e=\frac{a}{12} \\ \text { CE } \quad \frac{1}{2} m v^{2}+\frac{6 m g}{2 a}\left(\frac{a}{12}\right)^{2}=m g \frac{a}{12} \sin 30^{\circ} \\ \text { Leading to } \quad v=\sqrt{ }\left(\frac{g a}{24}\right)=\frac{\sqrt{6 g a}}{12} \end{gathered}$ Alternative approaches to (b) are considered on the next page.	M1 A1 M1 A1=A1 M1 A1 (7) [12]

Question Number	Scheme	Marks
5	Alternative approach to (b) using calculus with energy. Let distance moved by B be x $\text { CE } \quad \begin{aligned} \frac{1}{2} m v^{2}+\frac{6 m g}{2 a} x^{2} & =m g x \sin 30^{\circ} \\ v^{2} & =g x-\frac{6 g}{a} x^{2} \end{aligned}$ For maximum v $\begin{align*} \frac{\mathrm{d}}{\mathrm{~d} x}\left(v^{2}\right) & =2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=g-\frac{12 g}{a} x=0 \\ x & =\frac{a}{12} \\ v^{2} & =g\left(\frac{a}{12}\right)-\frac{6 g}{a}\left(\frac{a}{12}\right)^{2}=\frac{g a}{24} \\ v & =\sqrt{ }\left(\frac{g a}{24}\right) \tag{7} \end{align*}$	M1 A1=A1 M1 A1 M1
	Alternative approach to (b) using calculus with Newton's second law. As before, the centre of the oscillation is when extension is $\frac{a}{12}$ $\begin{array}{r} \text { N2L } \begin{array}{r} m g \sin 30^{\circ}-T=m \ddot{x} \\ \frac{1}{2} m g-\frac{6 m g\left(\frac{a}{12}+x\right)}{a}=m \ddot{x} \\ \ddot{x}=-\frac{6 g}{a} x \Rightarrow \omega^{2}=\frac{6 g}{a} \\ v_{\max }=\omega a=\sqrt{ }\left(\frac{6 g}{a}\right) \times \frac{a}{12}=\sqrt{ }\left(\frac{g a}{24}\right) \end{array} \end{array}$	M1 A1 M1 A1 A1 M1 A1

Question Number	Scheme	Marks
7 (a) (b)	Let speed at C be u $\mathrm{CE} \begin{gathered} \frac{1}{2} m u^{2}-\frac{1}{2} m\left(\frac{a g}{4}\right)=m g a(1-\cos \theta) \\ u^{2}=\frac{9 g a}{4}-2 g a \cos \theta \\ m g \cos \theta(+R)=\frac{m u^{2}}{a} \\ m g \cos \theta=\frac{9 m g}{4}-2 m g \cos \theta \end{gathered}$ eliminating u Leading to $\cos \theta=\frac{3}{4}$ At C $u^{2}=\frac{9 g a}{4}-2 g a \times \frac{3}{4}=\frac{3}{4} g a$ $(\rightarrow) \quad u_{x}=u \cos \theta=\sqrt{ }\left(\frac{3 g a}{4}\right) \times \frac{3}{4}=\sqrt{ }\left(\frac{27 g a}{64}\right)=2.033 \sqrt{a}$ (\downarrow) $\begin{array}{cc} u_{y}=u \sin \theta=\sqrt{ }\left(\frac{3 g a}{4}\right) \times \frac{\sqrt{ } 7}{4}=\sqrt{ }\left(\frac{21 g a}{64}\right)=1.792 \sqrt{a} \\ v_{y}^{2}=u_{y}^{2}+2 g h \Rightarrow v_{y}^{2}=\frac{21}{64} g a+2 g \times \frac{7}{4} a=\frac{245}{64} g a \\ \tan \psi=\frac{v_{y}}{u_{x}}=\sqrt{ }\left(\frac{245}{27}\right) \approx 3.012 \ldots \\ \psi \approx 72^{\circ} & \\ \text { Or } 1.3^{\circ} \quad\left(1.2502^{\circ}\right) & \text { awrt } 72^{\circ} \\ \text { awrt } 1.3^{\circ} \end{array}$	M1 A1 M1 A1 M1 M1 A1 (7) B1 M1 A1ft M1 M1 A1 M1 A1 (8) [15]
	Alternative for the last five marks Let speed at P be v. $\begin{gathered} \mathrm{CE} \quad \frac{1}{2} m v^{2}-\frac{1}{2} m\left(\frac{a g}{4}\right)=m g \times 2 a \quad \text { or equivalent } \\ v^{2}=\frac{17 m g a}{4} \\ \cos \psi=\frac{u_{x}}{v}=\sqrt{ }\left(\frac{27}{64} \times \frac{4}{17}\right)=\sqrt{ }\left(\frac{27}{272}\right) \approx 0.315 \\ \psi \approx 72^{\circ} \quad \text { awrt } 72^{\circ} \end{gathered}$ Note: The time of flight from C to P is $\frac{\sqrt{235}-\sqrt{21}}{8} \sqrt{\left(\frac{a}{g}\right)} \approx 1.38373 \sqrt{\left(\frac{a}{g}\right)}$	M1 M1 A1 M1 A1

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6679/ 01)
une 2009
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b)	$\begin{aligned} & \text { Resolving vertically: } 2 T \cos \theta=W \\ & \text { EPE }=2 \times \frac{80 \times 3.5^{2}}{2 \times 4},=245 \text { (or awrt 245) } \\ & \text { (alternative } \frac{80 \times 7^{2}}{16}=245 \text {) } \end{aligned}$	M1A2,1,0 M1A1 A1 M1A1ft,A1 [9]
Q2 (a) (b)	Object Mass c of m above base Cone m $2 h+3 h$ Base $3 m$ h Marker $4 m$ $d$$m \times 5 h+3 m \times h=4 m \times d$$d=2 h$	B1(ratio masses) B1(distances) M1A1ft A1 M1A1ft A1

edexcel

Question Number	Scheme	Marks
Q3 (a) (b)	(ismes, $\begin{gathered} \leftrightarrow \\ \\ R \times \frac{x}{r}=m x \times \frac{3 g}{2 r} \\ \\ R=\frac{3 m g}{2} \\ \underline{\underline{I}} \quad R \cos \theta=m g \\ \\ \frac{3 m g}{2} \times \frac{d}{r}=m g \\ d=\frac{2}{3} r \end{gathered}$	M1 A1 M1 A1 M1 A1 M1 A1 [8]
Q4 (a) (b)	$\begin{aligned} & \text { Volume }=\int_{\frac{1}{4}}^{1} \pi y^{2} d x=\int_{\frac{1}{4}}^{1} \pi \frac{1}{x^{4}} d x \\ & =\left[\pi \times \frac{-1}{3 x^{3}}\right]_{\frac{1}{4}}^{1} \\ & =\pi\left(\frac{-1}{3}+\frac{64}{3}\right)=21 \pi \\ & 21 \pi \rho \bar{x}=\rho \int \pi y^{2} x d x=\rho \int \pi \frac{1}{x^{4}} x d x \\ & 21 \pi \bar{x}=\pi\left[\frac{-1}{2 x^{2}}\right]_{\frac{1}{4}}^{1} \\ & \bar{x}=\frac{1}{21}\left(\frac{-1}{2}+\frac{16}{2}\right)=\frac{5}{14} \text { or awrt } 0.36 \\ & \bar{y}=0 \text { by symmetry } \end{aligned}$	M1A1 Alft A1 M1A1 Alft A1 B1

advancing learning, changing lives

Mark Scheme (Results) J anuary 2010

GCE

Mechanics M3 (6679)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 08445760027 , or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www. edexcel.com/ Aboutus/ contact-us/

J anuary 2010
Publications Code UA022968
All the material in this publication is copyright
© Edexcel Ltd 2010

J anuary 2010
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
Q1.	$0.5 a=4+\cos (\pi t)$	B1
	Integrating $\quad 0.5 v=4 t+\frac{\sin (\pi t)}{\pi}(+C)$	M1 A1
	Using boundary values $3=4+C \Rightarrow C=-1$	M1 A1
	When $t=1.5$	
	$0.5 v=6-\frac{1}{\pi}-1$	
	$v \approx 9.36\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1 (7)
		[7]

Question Number	Scheme	Marks
Q2.	(a) $\begin{gathered} \frac{2 \pi}{\omega}=2.4 \Rightarrow \omega=\frac{5 \pi}{6}(\approx 2.62) \\ x=0, t=0 \Rightarrow x=a \sin \omega t \\ \text { when } t=0.4, \quad x=a \sin \left(\frac{5 \pi}{6} \times 0.4\right) \quad\left(=\frac{\sqrt{ } 3}{2} a\right) \\ v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \Rightarrow 16=\frac{25 \pi^{2}}{36}\left(a^{2}-\frac{3 a^{2}}{4}\right) \Rightarrow a=\frac{48}{5 \pi}(\approx 3.06) \\ v_{\max }=a \omega=8 \quad \text { (or awrt } 8.0 \text { if decimals used earlier) cao } \end{gathered}$ (b) $\ddot{x}_{\max }=a \omega^{2}=\frac{20 \pi}{3}$	M1 A1 M1 M1 A1 M1 A1 (7) M1 A1 (2) [9]
	Alternative in (a) (a) $\begin{gathered} \frac{2 \pi}{\omega}=2.4 \Rightarrow \omega=\frac{5 \pi}{6} \\ x=0, t=0 \Rightarrow \quad x=a \sin \omega t \\ \dot{x}=a \omega \cos \omega t \\ 4=a \omega \cos \left(\frac{5 \pi}{6} \times 0.4\right) \\ a=\frac{48}{5 \pi}(\approx 3.06) \quad \text { or } a \omega=8 \\ v_{\max }=a \omega=8 \end{gathered}$	M1 A1 M1 M1 A1 M1 A1 (7)

Question Number	Scheme	Marks
Q4.	$\uparrow \quad T \cos \theta=40 \quad$ M1 attempt at both equations $\rightarrow \quad T \sin \theta=30$ leading to $\quad T=50$ $E=\frac{\lambda x^{2}}{2 a}=10$ HL $\quad T=\frac{\lambda x}{a}=50$	M1 A1 A1 M1 A1 B1 M1
	leading to $\quad x=0.4$ $O P=0.5+0.4=0.9(\mathrm{~m})$	M1 A1 Alft (10) [10]

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA022968 J anuary 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M3 (6679/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024475
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010
Mechanics M3 6679
Mark Scheme

Question Number	Scheme	Marks
Q1		B1 M1 A1 (3)
(b)	$\begin{gathered} \text { Eqn of motion } \begin{array}{c} T \sin \alpha=m \frac{v^{2}}{5 l} \\ \frac{13 m g}{12} \times \frac{5}{13}=m \frac{v^{2}}{5 l} \\ v^{2}=\frac{25 g l}{12} \\ v=\frac{5}{2} \sqrt{\frac{g l}{3}} \quad\left(\text { accept } 5 \sqrt{\frac{g l}{12}} \text { or } \sqrt{\frac{25 g l}{12}} \text { or any other equiv) }\right) \end{array} \end{gathered}$	M1 A1 M1 dep A1 (4)

Question Number	Scheme	Marks
Q2 (a)	$\begin{align*} F & =(-) \frac{k}{x^{2}} \\ m g & =(-) \frac{k}{R^{2}} \\ F & =\frac{m g R^{2}}{x^{2}} \tag{3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} m \ddot{x} & =-\frac{m g R^{2}}{x^{2}} \\ v \frac{\mathrm{~d} v}{\mathrm{~d} x} & =-\frac{g R^{2}}{x^{2}} \\ \frac{1}{2} v^{2} & =\int\left(-\frac{g R^{2}}{x^{2}}\right) \mathrm{d} x \\ \frac{1}{2} v^{2} & =\frac{g R^{2}}{x} \quad(+c) \\ x=R, v=3 U \quad \frac{9 U^{2}}{2} & =g R+c \\ \frac{1}{2} v^{2} & =\frac{g R^{2}}{x}+\frac{9 U^{2}}{2}-g R \\ x=2 R, v=U \quad \frac{1}{2} U^{2} & =\frac{g R^{2}}{2 R}+\frac{9 U^{2}}{2}-g R \\ U^{2} & =\frac{g R}{8} \\ U & =\sqrt{\frac{g R}{8}} \end{aligned}$	M1 M1 M1 dep on 1st M mark A1 M1 dep on 3rd M mark M1 dep on 3rd M mark A1

Question Number	Scheme	Marks
Q3	$\begin{aligned} \text { EPE lost } & =\frac{\lambda \times 0.6^{2}}{2 \times 0.9}-\frac{\lambda \times 0.1^{2}}{2 \times 0.9}\left(=\frac{7}{36} \lambda\right) \\ \mathrm{R}(\uparrow) \quad R & =m g \cos \theta \\ & =0.5 g \times \frac{4}{5}=0.4 g \\ F & =\mu R=0.15 \times 0.4 g \\ \text { P.E. gained } & =\text { E.P.E. lost }- \text { work done against friction } \\ 0.5 \mathrm{~g} \times 0.7 \sin \theta & =\frac{\lambda \times 0.6^{2}}{2 \times 0.9}-\frac{\lambda \times 0.1^{2}}{2 \times 0.9}-0.15 \times 0.4 g \times 0.7 \\ 0.1944 \lambda & =0.5 \times 9.8 \times 0.7 \times \frac{3}{5}+0.15 \times 0.4 \times 9.8 \times 0.7 \\ \lambda & =12.70 \ldots . . . \\ \lambda & =13 \mathrm{~N} \quad \text { or } 12.7 \end{aligned}$	M1 A1 M1 M1 A1 M1 A1 A1 A1

edexcel

Question Number	Scheme	Marks
Q5 ${ }^{\text {L }}$	Energy: $\quad m g a \sin \theta=\frac{1}{2} m \times 5 a g-\frac{1}{2} m v^{2}$ $v^{2}=5 a g-2 a g \sin \theta$	M1 A1 A1 (3)
(b)	Eqn of motion along radius: $\begin{aligned} T+m g \sin \theta & =\frac{m v^{2}}{a} \\ T & =\frac{m}{a}(5 a g-2 a g \sin \theta)-m g \sin \theta \\ T & =m g(5-3 \sin \theta) \end{aligned}$	M1 A1 M1 A1 (4)
(c)	At $C, \theta=90^{\circ}$ $\begin{equation*} T=m g(5-3)=2 m g \tag{3} \end{equation*}$ $T>0 \quad \therefore P$ reaches C	M1 A1 A1
(d)	Max speed at lowest point $\begin{array}{ll} \left(\theta=270^{\circ} ; \quad\right. & v^{2} \\ & =5 a g-2 a g \sin 270) \\ v^{2} & =5 a g+2 a g \\ v & =\sqrt{ }(7 a g) \end{array}$	M1 A1 (2) $[12]$

edexcel

Question Number	Scheme	Marks
Q6 (a)	$\begin{align*} & \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{3}{(t+1)^{2}} \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=\int-3(t+1)^{-2} \mathrm{~d} t \\ &=3(t+1)^{-1}(+c) \\ & t=0, \quad v=2 \quad 2=3+c \quad c=-1 \\ & \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{3}{t+1}-1 \quad * \tag{5} \end{align*}$	M1 M1 A1 M1 A1
(b)	$\begin{aligned} x & =\int\left(\frac{3}{t+1}-1\right) \mathrm{d} t \\ & =3 \ln (t+1)-t \quad\left(+c^{\prime}\right) \end{aligned}$ $\begin{align*} t=0, x=0 \Rightarrow c^{\prime} & =0 \\ x & =3 \ln (t+1)-t \\ v & =0 \Rightarrow \frac{3}{t+1}=1 \\ t & =2 \\ x & =3 \ln 3-2 \\ & =1.295 \ldots \\ & =1.30 \mathrm{~m} \quad \text { (Allow } 1.3 \text {) } \tag{7} \end{align*}$	M1 A1 B1 M1 A1 M1 A1 [12]

Question Number	Scheme	Marks
Q7	A 2 mg $\mathrm{R}(\uparrow) \quad T=2 m g$ Hooke's law: $T=\frac{6 m g e}{3 a}$ $\begin{align*} 2 m g & =\frac{6 m g e}{3 a} \\ e & =a \\ A O & =4 a \tag{3} \end{align*}$	B1 M! A1
(b)	H.L. Eqn. of motion $\begin{gather*} T=\frac{6 m g(a-x)}{3 a}=\frac{2 m g(a-x)}{a} \\ -2 m g+T=2 m \ddot{x} \\ -2 m g+\frac{2 m g(a-x)}{a}=2 m \ddot{x} \\ -\frac{2 m g x}{a}=2 m \ddot{x} \\ \ddot{x}=-\frac{g}{a} x \\ \text { period } 2 \pi \sqrt{\frac{a}{g}} * \tag{5} \end{gather*}$	B1ft M1 M1 A1 A1

edexcel

Question Number	Scheme	Marks
(c)	$\begin{aligned} v^{2} & =\omega^{2}\left(a^{2}-x^{2}\right) \\ v_{\max }^{2} & =\frac{g}{a}\left(\left(\frac{a}{4}\right)^{2}-0\right) \\ v_{\max } & =\frac{1}{4} \sqrt{ }(g a) \end{aligned}$	M1 A1 A1 (3)
(d)	$\begin{aligned} x=-\frac{a}{8} \quad v^{2} & =\frac{g}{a}\left(\frac{a^{2}}{16}-\frac{a^{2}}{64}\right) \\ & =\frac{3 a g}{64} \\ v^{2} & =u^{2}+2 a s \\ 0 & =\frac{3 a g}{64}-2 g h \\ h & =\frac{3 a}{128} \end{aligned}$ Total height above $O=\frac{a}{8}+\frac{3 a}{128}=\frac{19 a}{128}$	M1 M1 A1 A1 (4) [15]

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA024475 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) J anuary 2011

GCE

GCE Mechanics M3 (6679) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026583
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- Mmarks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

J anuary 2011
Mechanics M3 6679
Mark Scheme

Question Number	Scheme	Marks
1.	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=7-2 x$ $\frac{1}{2} v^{2}=7 x-x^{2}(+c)$ $x=0$ $v=6 \Rightarrow c=18$	M1
	$v=0$ $x^{2}-7 x-18=0$ $(x+2)(x-9)=0$ $\therefore x=9$	M1A1

Question Number	Scheme	Marks
3. (a)	$\begin{aligned} & \mathrm{Vol}=\pi \int_{1}^{2} y^{2} \mathrm{~d} x=\pi \int_{1}^{2} \mathrm{e}^{2 x} \mathrm{~d} x \\ & =\frac{1}{2} \pi\left[\mathrm{e}^{2 x}\right]_{1}^{2} \\ & =\frac{1}{2} \pi\left[\mathrm{e}^{4}-\mathrm{e}^{2}\right] \end{aligned}$	M1 M1 A1 A1 (4)
(b)	$\begin{aligned} & \mathrm{C} \text { of } \mathrm{M}=\frac{\int_{1}^{2} \pi y^{2} x \mathrm{~d} x}{\mathrm{vol}} \\ & \int_{1}^{2} \mathrm{e}^{2 x} x \mathrm{~d} x=\left[\frac{1}{2} x \mathrm{e}^{2 x}\right]_{1}^{2}-\int_{1}^{2} \frac{1}{2} \mathrm{e}^{2 x} \mathrm{~d} x \\ & =\left[\frac{1}{2} x \mathrm{e}^{2 x}\right]_{1}^{2}-\left[\frac{1}{4} \mathrm{e}^{2 x}\right]_{1}^{2} \\ & =\frac{1}{2} \times 2 \mathrm{e}^{4}-\frac{1}{2} \times 1 \mathrm{e}^{2}-\left(\frac{1}{4} \mathrm{e}^{4}-\frac{1}{4} \mathrm{e}^{2}\right) \\ & =\left(\frac{3}{4} \mathrm{e}^{4}-\frac{1}{4} \mathrm{e}^{2}\right) \\ & \mathrm{C} \text { of } \mathrm{M}=\frac{\pi\left(\frac{3}{4} \mathrm{e}^{4}-\frac{1}{4} \mathrm{e}^{2}\right)}{\frac{1}{2} \pi\left(\mathrm{e}^{4}-\mathrm{e}^{2}\right)}=1.656 \ldots \\ & =1.66 \\ & (3 \text { sf }) \end{aligned}$	M1 A1 M1 A1 M1 A1

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} & x=5 \sin \left(\frac{\pi t}{3}\right) \\ & \dot{x}=5 \times \frac{\pi}{3} \cos \left(\frac{\pi t}{3}\right) \\ & \ddot{x}=-5 \times\left(\frac{\pi}{3}\right)^{2} \sin \left(\frac{\pi t}{3}\right) \\ & \ddot{x}=-\frac{\pi^{2}}{9} x \quad(\therefore \text { S.H.M. }) \end{aligned}$	M1A1 A1 (3)
(b)	$\begin{aligned} & \text { period }=\frac{2 \pi}{\frac{\pi}{3}}=6 \\ & \text { amplitude }=5 \end{aligned}$	B1 B1 (2)
(c)	$\begin{aligned} & \ldots=5 \times \frac{\pi}{3} \cos \left(\frac{\pi t}{3}\right) \quad \text { or }\left\|v_{\max }\right\|=a \omega \\ & \max . v=\frac{5 \pi}{3} \end{aligned}$	M1 A1 (2)
(d)	At $A \quad x=2 \quad 2=5 \sin \left(\frac{\pi t}{3}\right)$ $\begin{aligned} & \sin \frac{\pi}{3} t=0.4 \\ & t_{A}=\frac{3}{\pi} \times \sin ^{-1} 0.4 \end{aligned}$ At $B \quad x=3 \quad t_{B}=\frac{3}{\pi} \times \sin ^{-1} 0.6$ time $A \rightarrow B=\frac{3}{\pi} \times \sin ^{-1} 0.6-\frac{3}{\pi} \times \sin ^{-1} 0.4$ $=0.2215 \ldots=0.22 \mathrm{~s}$ accept awrt 0.22	M1 A1 A1 A1 (4) [11]

Question Number	Scheme	Marks
5. (a)	$\begin{align*} & r=\frac{l}{\sqrt{ } 2} \\ & \mathrm{R}(\uparrow) \quad T_{a} \cos 45=T_{b} \cos 45+m g \\ & T_{a}-T_{b}=m g \sqrt{ } 2 \tag{1}\\ & \mathrm{R}(\rightarrow) \quad T_{a} \cos 45+T_{b} \cos 45=m r \omega^{2} \\ & T_{a} \times \frac{1}{\sqrt{ } 2}+T_{b} \times \frac{1}{\sqrt{ } 2}=m \frac{l}{\sqrt{ } 2} \omega^{2} \\ & T_{a}+T_{b}=m l \omega^{2} \tag{2}\\ & T_{a}-T_{b}=m g \sqrt{ } 2 \tag{1}\\ & 2 T_{a}=m\left(l \omega^{2}+g \sqrt{ } 2\right) \\ & T_{a}=\frac{1}{2} m\left(l \omega^{2}+g \sqrt{ } 2\right) \\ & T_{b}=m l \omega^{2}-T_{a} \\ & =\frac{1}{2} m\left(l \omega^{2}-g \sqrt{ } 2\right) \end{align*}$	B1 M1A1 M1A1 M1 A1 A1
(b)	$\begin{aligned} & T_{b}>0 \quad \frac{1}{2} m\left(l \omega^{2}-g \sqrt{ } 2\right)>0 \\ & \omega^{2}>\frac{g \sqrt{ } 2}{l} \quad * \end{aligned}$	M1 A1

Question Number	Scheme	Marks
$6 .$ (a)		B1 M1A1 M1A1 A1 A1 (7)
(b)		B1 M1A1 M1A1 A1 (6) [13]

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} & m g l(\cos \alpha-\cos \theta)=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \\ & v^{2}=u^{2}+2 g l(\cos \alpha-\cos \theta) \end{aligned}$	$\mathrm{M} 1 \mathrm{~A} 1=\mathrm{Al}$ A1 (4)
(b)	$\begin{aligned} & \cos \alpha=\frac{3}{5} \quad v^{2}=2 g l\left(\frac{3}{5}-\cos \theta\right)+u^{2} \\ & \text { At top } \theta=360^{\circ} \quad v^{2}=2 g l\left(\frac{3}{5}-1\right)+u^{2} \\ & v^{2}>0 \quad-2 g l \times \frac{2}{5}+u^{2}>0 \\ & u^{2}>\frac{4 g l}{5} \\ & u>2 \sqrt{\frac{g l}{5}} \quad * \end{aligned}$	M1A1 M1 A1 (4)

Question Number	Scheme	Marks
(c)	Equation of motion along radius at lowest point: $\begin{aligned} & T_{1}-m g=\frac{m v^{2}}{l} \\ & \theta=180 \quad v^{2}=2 g l\left(\frac{3}{5}+1\right)+u^{2} \\ & v^{2}=\frac{16 g l}{5}+u^{2} \\ & T_{1}=\frac{m}{l}\left(\frac{16 g l}{5}+u^{2}\right)+m g \\ & =\frac{21 m g}{5}+\frac{m u^{2}}{l} \end{aligned}$ At highest point: $\begin{aligned} & T_{2}+m g=\frac{m v^{2}}{l} \\ & \theta=360 \quad T_{2}=2 m g\left(-\frac{2}{5}\right)+\frac{m u^{2}}{l}-m g \\ & T_{2}=\frac{m u^{2}}{l}-\frac{9 m g}{5} \\ & T_{1}=5 T_{2} \\ & \frac{21 m g}{5}+\frac{m u^{2}}{l}=5\left(\frac{m u^{2}}{l}-\frac{9 m g}{5}\right) \\ & \frac{66 m g}{5}=\frac{4 m u^{2}}{l} \\ & u^{2}=\frac{33 g l}{10} \quad * \end{aligned}$	M1A1 M1 A1 M1 M1 A1 M1 A1

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026583 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Mark Scheme (Results)
June 2011

GCE Mechanics M3 (6679) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028443
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011
Mechanics M3 6679
Mark Scheme

Question Number	Scheme	Marks
2.	$\begin{array}{ll} V=\pi \int_{0}^{3}\left(9-x^{2}\right)^{2} \mathrm{~d} x=\pi \int_{0}^{3}\left(81-18 x^{2}+x^{4}\right) \mathrm{d} x & \\ =\pi\left[81 x-6 x^{3}+\frac{x^{5}}{5}\right]_{0}^{3}=\frac{648}{5} \pi & \text { OR: } \\ \int_{0}^{3} \pi\left(9-x^{2}\right)^{2} x \mathrm{~d} x & \pi \int_{0}^{3}(81 x- \\ =\frac{\pi}{6}\left[-\left(9-x^{2}\right)^{3}\right]_{0}^{3} & =\pi\left[\frac{81}{2} x\right. \\ =\frac{\pi}{6}\left[0+(9)^{3}\right] & \\ =\pi\left[\frac{81}{2} \times 3^{2}-\frac{9}{2} \times 3^{4}+\frac{1}{6} \times 3^{6}\right] & =\frac{243}{2} \pi \end{array}$	M1 M1 A1 M1 A1 M1 A1
	$\bar{x}=\frac{\frac{243}{2}}{\frac{648}{5}}=\frac{15}{16} \quad(\text { accept } 0.94)$	M1 A1 (9) 9
3. (a)	Mass ratio $\pi(3 l)^{2} \times 5 l \rho$ $\frac{2}{3} \pi(3 l)^{3} \times 2 \rho$ $81 \pi l^{3} \rho$ 5 4 9 Dist. from O $\frac{5}{2} l$ $-\frac{3}{8} \times 3 l$ \bar{x} Moments equation: $\begin{aligned} & 5 \times \frac{5}{2} l-4 \times \frac{9}{8} l=9 \bar{x} \\ & \bar{x}=\frac{8}{9} l \end{aligned}$	B1 B1 M1 A1 ft A1 (5)

Question Number	Scheme	Marks
(b)	$\begin{aligned} G X & =5 l-\frac{8}{9} l=\frac{37}{9} l \\ \tan \theta^{\circ} & =\frac{3 l}{\frac{37}{9} l}=\frac{27}{37} \\ \theta^{\circ} & =36.1^{\circ} \text { accept } 36^{\circ}, 0.63 \text { or } 0.630 \mathrm{rad} \text { or better } \end{aligned}$	B1ft M1 A1 ft A1 (4) 9

Question Number	Scheme	Marks
4. (a)		B1 M1 A1 M1 A1=A1 M1 A1 (8)
(b)	$\begin{aligned} T_{b} & =\sqrt{2}\left(\frac{4}{5} T_{a}-m g\right) \\ & =\sqrt{2}\left(\frac{4}{7} m\left(3 a \omega^{2}+g\right)-m g\right) \\ & =\frac{3 \sqrt{2}}{7} m\left(4 a \omega^{2}-g\right) \quad \text { oe } \end{aligned}$	M1 A1

Question Number	Scheme	Marks
(c)	$\begin{aligned} T_{b} \geqslant 0 \Rightarrow 4 a \omega^{2} & \geqslant g \\ \omega^{2} & \geqslant \frac{g}{4 a} \\ \omega & \geqslant \frac{1}{2} \sqrt{\frac{g}{a}} \quad * \end{aligned}$ (Allow strict inequalities in (c).)	M1 A1 (2)
		12
5. (a)	$\begin{aligned} & T=\frac{3 m g}{l}\left(\frac{1}{6} l\right)=\frac{1}{2} m g \\ & \mathrm{R}(\uparrow) \mathrm{R}=m g \quad \quad \mathrm{R}(\rightarrow) \quad F=T=\frac{1}{2} m g \\ & F \leqslant \mu R \\ & \frac{1}{2} m g \leqslant \mu m g \\ & \mu \geqslant \frac{1}{2} \quad * \end{aligned}$	B1 M1 M1 A1
(b)	$\begin{aligned} & \text { E.P.E. lost }=\frac{1}{2} \times \frac{3 m g}{l}\left(\frac{1}{2} l\right)^{2}=\frac{3 m g l}{8} \\ & \text { Work done by friction }=\frac{1}{2} m g\left(\frac{l}{2}\right) \\ & \frac{3 m g l}{8}=\frac{1}{2} m v^{2}+\frac{1}{2} m g\left(\frac{l}{2}\right) \\ & v^{2}=\frac{g l}{4} \\ & v=\frac{1}{2} \sqrt{g l} \end{aligned}$	B1 B1 M1 A1ft
		(5)

Question Number	
(b)	Energy to $C:$ $\frac{1}{2} \times m U^{2}-\frac{1}{2} m(3 \sqrt{a g})^{2}=m a g$ $U^{2}=2 a g+9 a g$ $U=\sqrt{11 g a}$
(c)	

Energy from C to rest:

$$
\begin{aligned}
& \frac{1}{2} \times m \times\left(\frac{5}{12} \sqrt{11 a g}\right)^{2}=m g a(1-\cos \theta) \\
& \frac{25}{144} \times 11 a g=2 g a(1-\cos \theta) \\
& \cos \theta=\frac{1}{2}\left(2-\frac{25 \times 11}{144}\right) \\
& \theta=87.4 \ldots \\
& \theta\left.=87^{\circ} \text { (or } 1.5 \mathrm{rad}\right) \text { or better }
\end{aligned}
$$

M1 A1

Question Number	Scheme	Marks
7. (a)	Total extn. $=0.6$ $T_{b}=\frac{\lambda \times \mathrm{ext}}{l}=\frac{2(0.3-x)}{0.7}=\frac{2}{7}(3-10 x) \quad *$	M1 A1 (2)
(b)	$T_{a}=\frac{2(x+0.3)}{0.7} \quad\left(=\frac{2}{7}(10 x+3)\right)$	B1 (1)
(c)	$\begin{aligned} & T_{b}-T_{a}=0.5 \ddot{x} \\ & \frac{2}{7}(3-10 x)-\frac{2}{7}(10 x+3)=0.5 \ddot{x} \\ & 2 \times\left(-\frac{20 x}{7}\right)=0.5 \ddot{x} \\ & \ddot{x}=-\frac{40}{7 \times 0.5} x \\ & (\therefore \text { S.H.M. }) \\ & \text { Period }=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{7 \times 0.5}{40}}=2 \pi \sqrt{\frac{7}{80}} * \end{aligned}$	M1 A1 ft M1 A1 M1 A1 (6)
(d)	$\nu_{\max }=a \omega=0.2 \sqrt{\frac{80}{7}}$ o.e. or a.w.r.t. $0.68 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 (2)
(e)	$\begin{aligned} & x=a \cos \omega t=0.2 \cos \left(\sqrt{\frac{80}{7}} t\right) \\ & x=-0.1 \quad-\frac{0.1}{0.2}=\cos \left(\sqrt{\frac{80}{7}} t\right) \\ & t=\sqrt{\frac{7}{80}} \cos ^{-1}(-0.5) \\ & t\left.=\sqrt{\frac{7}{80}} \times \frac{2 \pi}{3}=\frac{\pi}{3} \sqrt{\frac{7}{20}} \quad \text { o.e. (accept a.w.r.t. } 0.62\right) \mathrm{s} \end{aligned}$	M1 A1 M1 A1 (4)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028443 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

January 2012

GCE Mechanics M3 (6679) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030776
All the material in this publication is copyright
(C) Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

January 2012
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
1.	EPE $=\frac{\lambda \times 0.5^{2}}{1.2}$ GPE lost $=$ EPE gained $0.8 \times 9.8 \times 1.1=\frac{\lambda \times 0.5^{2}}{1.2}$ $\lambda=41.4 \mathrm{~N}$ or 41 N	B 1
M1 (used)		
		A 1 ft

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA030776 January 2012
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

edexcel

Mark Scheme (Results)
Summer 2012

GCE Mechanics M3
(6679) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032681
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012

6679 Mechanics 3

Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
-Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mechanics Marking

Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
Omission or extra g in a resolution is accuracy error not method error.
Omission of mass from a resolution is method error.
Omission of a length from a moments equation is a method error.
Omission of units or incorrect units is not (usually) counted as an accuracy error.
DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF . Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
However, premature approximation should be penalised every time it occurs. MARKS MUST BE ENTERED IN THE SAME ORDER AS THEY APPEAR ON THE MARK SCHEME.

In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.

Accept column vectors in all cases.

Summer 2012

6679 Mechanics M3

Mark Scheme

Question Number	Scheme				Marks	
4 (a)		volume	Mass ratio	C of M from V	B1, B1	
	Large cone	$\frac{1}{3} \pi a^{2} .2 a=\frac{2}{3} \pi a^{3}$	2	$\frac{3}{4} \times 2 a=\frac{3}{2} a$		
	Small cone	$\frac{1}{3} \pi a^{2} \cdot a=\frac{1}{3} \pi a^{3}$	1	$a+\frac{3}{4} a=\frac{7}{4} a$		
	S	$\frac{1}{3} \pi a^{2} \cdot a=\frac{1}{3} \pi a^{3}$	1	D		
	$\begin{aligned} 1 \times D & =2 \times \frac{3}{2} a-1 \times \frac{7}{4} a \\ & =\frac{12-7}{4} a=\frac{5}{4} a \end{aligned}$ $45^{\circ}+26.6^{\circ}\left(=71.6^{\circ}\right),(81.8698 \ldots \ldots=) 81.9^{\circ}$ Take moments about V : $\begin{aligned} & M g \times \frac{5}{4} a \times \cos 71.6=k M g \times \sqrt{5} a \times \cos 81.9 \\ & k=\frac{5 \cos 71.6}{4 \sqrt{5} \cos 81.9}=1.25 \end{aligned}$				M1A1A1	
(b)					(5)	
						(5) 10

Question Number	Scheme	Marks
5(a)	Conservation of energy : Loss in GPE = gain in KE $m g a(\cos \alpha-\cos \theta)=\frac{1}{2} m v^{2}$ Substitute for $\cos \alpha$ and rearrange to given answer: $v^{2}=\frac{2 m g a}{m}\left(\frac{3}{5}-\cos \theta\right)=\frac{2 g a}{5}(3-5 \cos \theta)$	M1 A2,1,0 A1 (4)
(b)	Considering the acceleration towards the centre of the hemisphere: $m g \cos \theta-R=\frac{m v^{2}}{a}$ Substitute for v^{2} to form expression for R : $R=m g \cos \theta-\frac{m v^{2}}{a}=m g(3 \cos \theta-2 \cos \alpha)\left(=m g\left(3 \cos \theta-\frac{6}{5}\right)\right)$ Loses contact with the surface when $R=0$ $\begin{aligned} & \cos \theta=\frac{2}{5} \\ & v^{2}=\frac{2 g a}{5}, \quad v=\sqrt{\frac{2 g a}{5}} \end{aligned}$	M1 A2,1,0 DM1 A1 M1 A1 A1 (8)
Alt:	$\begin{array}{r} R=0 \Rightarrow m g \cos \theta=\frac{m v^{2}}{a} \\ \cos \theta=\frac{v^{2}}{g a} \end{array}$ Substitute in given (a) $v^{2}=\frac{2 g a}{5}\left(3-5 \frac{v^{2}}{g a}\right)$ $\begin{aligned} & v^{2}=\frac{6 g a}{5}-2 v^{2}, \quad 3 v^{2}=\frac{6 g a}{5} \\ & v=\sqrt{\frac{2 g a}{5}} \end{aligned}$	DM1 A1 M1 A1 A1

Question Number	Scheme	Marks
6(a)	- \uparrow	
	$\begin{aligned} & \text { Mass of lamina }=\rho \frac{1}{2} \times 2 a \times \sqrt{3} a=\sqrt{3} \rho a^{2} \\ & \sum \rho x \times \frac{2 x}{\sqrt{3}} \times \delta x=\rho \int_{0}^{\sqrt{3} a} \frac{2 x^{2}}{\sqrt{3}} \mathrm{~d} x \end{aligned}$	B1 M1
	$=\rho\left[\frac{2 x^{3}}{3 \sqrt{3}}\right]_{0}^{\sqrt{3} a}$	A1
	$\begin{gathered} =\rho \frac{2 \times 3 \sqrt{3} a^{3}}{3 \sqrt{3}}=2 \rho a^{3} \\ \text { Distance from vertex }=\frac{2 \rho a^{3}}{\sqrt{3} \rho a^{2}}=\frac{2}{3} a \sqrt{3} \quad * * \end{gathered}$	A1 M1A1 (6)
(b)		
	Area of each sector $=\frac{1}{6} \pi a^{2}$	B1
	Using sector formula, $d=h \sin \alpha=\frac{2 a \sin \alpha}{3 \alpha} \sin \alpha=\frac{a}{3 \frac{\pi}{6}} \times \frac{1}{2}=\frac{a}{\pi}$	B2,1,0
	Taking moments: $\left(\sqrt{3} a^{2}-2 \times \frac{\pi a^{2}}{6}\right) D=\sqrt{3} a^{2} \times \frac{\sqrt{3} a}{3}-2 \times \frac{\pi a^{2}}{6} \times \frac{a}{\pi}$	M1A1

Question Number	Scheme	Marks
	$D=\frac{\frac{2 a^{3}}{3}}{\left(\sqrt{3}-\frac{\pi}{3}\right) a^{2}}=\frac{2 a}{3 \sqrt{3}-\pi}^{* *}$	A1
	(6)	

Question Number	Scheme	Marks
7(a)	Use of $\begin{aligned} & T=\frac{\lambda x}{a}=m g \\ & T=\frac{24.5 x}{0.75}=0.5 g \\ & x=\frac{0.75 \times 0.5 g}{24.5}=0.15, \quad A E=0.75+0.15=0.9(\mathrm{~m}) \quad(* *) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$
(b)	Using gain in EPE $=$ loss in GPE $\begin{aligned} \frac{\lambda x^{2}}{2 a} & =\frac{24.5 x^{2}}{1.5}=\ldots . . \\ & \ldots .=0.5 g(0.75+x) \end{aligned}$ Form quadratic in x and attempt to solve for x : $\begin{aligned} & 24.5 x^{2}=5.5125+7.35 x, 24.5 x^{2}-7.35 x-5.5125=0, \\ & x=\frac{7.35 \pm \sqrt{7.35^{2}+4 \times 24.5 \times 5.5125}}{49} \\ & \left(\text { or } 40 x^{2}-12 x-9=0, \quad x=\frac{12 \pm \sqrt{144+3600}}{80}\right) \\ & x=0.647 \ldots(\mathrm{~m}) \quad A C \approx 1.4(\mathrm{~m}) \end{aligned}$	M1 A1 A1 DM1 A1
(c)	Using $F=m a$ and displacement x from E : $\begin{aligned} & 0.5 g-\frac{24.5(x+0.15)}{0.75}=0.5 \\ & -\frac{196}{3} x, \text { so SHM } \end{aligned}$	M1 A2,1,0 A1
(d)	$\begin{aligned} \text { Max speed } & =\text { their } a x \text { their } \omega \\ & =(0.647-0.15) \times \sqrt{\frac{196}{3}} \\ & \approx 4.0 \mathrm{~ms}^{-1} \quad(4.02) \end{aligned}$	(4) A1
		(2) 14

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032681 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)

January 2013

GCE Mechanics - M3 (6679/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.
You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034768
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.
3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark.
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * or AG: The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
$a M$		\bullet
$a A$	\bullet	
$b M 1$		\bullet
$b A 1$	\bullet	
$b B$	\bullet	
$b M 2$		\bullet
$b A 2$		\bullet

J anuary 2013 6679 M3
 Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} & v \frac{\mathrm{~d} v}{\mathrm{~d} x}=9 x \\ & \frac{1}{2} v^{2}=9 x \quad(+c) \\ & v^{2}=9 x^{2}+c \\ & x=2 \quad v=6 \quad 36=9 \times 4+c \Rightarrow c=0 \\ & v^{2}=9 x^{2} \end{aligned}$	M1 A1 M1dep A1

Question Number	Scheme	Marks
6	$\text { At } B \quad m g \cos 60(+R)=\frac{m v^{2}}{a}$	M1A1
(b)	$\frac{1}{2} g=\frac{v^{2}}{a} \quad v=\sqrt{\frac{a g}{2}} \quad *$	A1
	Energy A to $B: \quad \frac{1}{2} m u^{2}-\frac{1}{2} m\left(\frac{a g}{2}\right)=m g a \sin 30$ $u^{2}=\frac{a g}{2}+2 a g \times \frac{1}{2}$	M1A1A1
	$u=\sqrt{\frac{3 a g}{2}}$	A1
(c)	$\text { Horiz speed }=\sqrt{\frac{a g}{2}} \cos 60 \quad\left(=\frac{1}{2} \sqrt{\frac{a g}{2}}\right)$	M1A1
	$\text { Initial vert speed }=(-) \sqrt{\frac{a g}{2}} \sin 60\left(=(-) \frac{1}{2} \sqrt{\frac{3 a g}{2}}\right)$	M1
	$v^{2}=\frac{1}{4} \times \frac{3 a g}{2}+2 g \times \frac{a}{2}$ $v^{2}=\frac{11 a g}{8}$	M1A1
	$\tan \theta=\frac{\text { vert }}{\text { horiz }}=\sqrt{\frac{11 a g}{8} \times \frac{8}{a g}}=\sqrt{11}$ $\theta=73.22 \ldots=73$	M1 A1

Question Number	Scheme	Marks
7 (a)	$T=\frac{\lambda x}{l} \Rightarrow 240=\frac{\lambda \times 18}{30}$	M1A1
	$\lambda=400$	A1
(b)	$24 \mathrm{~cm}$	
	Extension $=10 \mathrm{~cm}$ or 20 cm (used in (b) or (c))	B1
	$T=\frac{400 \times 10}{15}=\left(\frac{800}{3}\right)$	M1A1ft
	$\mathrm{R}(\uparrow) \quad 2 T \cos \theta-1.5 g=(\pm) 1.5 a$	M1A1
	$\frac{1600}{3} \times \frac{7}{25}-1.5 \times 9.8=(\pm) 1.5 a$	
	$a=89.75 \ldots \quad a=90 \mathrm{~m} \mathrm{~s}^{-2}$ or 89.8 (positive)	A1
(c)	$\text { E.P.E. }=\frac{1}{2} \times 400 \times \frac{0.2^{2}}{0.3}$	B1ft (any correct EPE)
	$1.5 g \times 0.07+\frac{1}{2} \times 1.5 v^{2}=200 \times \frac{0.2^{2}}{0.3}-\frac{200 \times 0.18^{2}}{0.3}$	M1A1A1
	$v^{2}=\frac{1}{0.75}\left(200 \times \frac{0.2^{2}}{0.3}-\frac{200 \times 0.18^{2}}{0.3}-1.5 g \times 0.07\right)$	M1dep
	$v=2.32 \ldots=2.3 \mathrm{~m} \mathrm{~s}^{-1}$	A1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467

Fax 01623450481

Email publication.orders@edexcel.com
Order Code UA034768 J anuary 2013

For more information on Edexcel qualifications, please visit our website

Rewarding Learning

edexcel "

Mark Scheme (Results)

Summer 2013

GCE Mechanics 3 (6679/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036430
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as $A \mathrm{ft}$.

Question Number	Scheme		Marks
1.	Vertical: $R \cos \beta=m g$ $R \sin \beta=\frac{m v^{2}}{r}=\frac{3 m v^{2}}{a}$ Divide: $\begin{aligned} \tan \beta & =\frac{3 m v^{2}}{a m g} \\ \tan \beta & =\frac{h}{a} \\ \frac{3 m v^{2}}{a m g} & =\frac{h}{a}, \frac{3 v^{2}}{g}=h, v=\sqrt{\frac{h g}{3}} \end{aligned}$	*AG	M1A1 M1A1 M1dep B1 A1 (7)

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} & v=\frac{4}{(x+2)}=\frac{\mathrm{d} x}{\mathrm{~d} t} \\ & \frac{\mathrm{~d} t}{\mathrm{~d} x}=\frac{x+2}{4} ; \quad \int_{t=0}^{t=2} 1 \mathrm{~d} t=\frac{1}{4} \int_{x=0}^{x=X}(x+2) \mathrm{d} x, \quad[t]_{0}^{2}=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{X} \\ & 2=\frac{X^{2}}{8}+\frac{X}{2}, \\ & \quad 0=X^{2}+4 X-16, \quad X=\frac{-4+\sqrt{80}}{2}=2.47 \text { (m) } \end{aligned}$	B1 M1,A1 M1depA1
(b)	$\begin{aligned} a\left(=\frac{\mathrm{d} v}{\mathrm{~d} t}\right) & =v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & =\frac{4}{(x+2)} \times \frac{-4}{(x+2)^{2}} \\ & =\frac{-16}{(2.47+2)^{3}}=-0.1788 \ldots \quad \text { their } X \\ & 0.18\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \text { towards } O . \end{aligned}$	B1 M1A1 M1dep A1
		$\begin{array}{r} (5) \\ {[10]} \\ \hline \end{array}$

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
6 \\
(a) \\
v1
\end{tabular} \& \[
\begin{aligned}
\& \text { Mass of quadrant }=\rho \frac{\pi a^{2}}{4} \\
\& \begin{aligned}
\& \int_{0}^{a} \rho x \sqrt{a^{2}-x^{2}} \mathrm{~d} x= \rho\left[-\frac{1}{3}\left(a^{2}-x^{2}\right)^{\frac{3}{2}}\right]_{0}^{a} \\
\&= \rho\left[0+\frac{1}{3} a^{3}\right] \\
\& \rho \frac{\pi a^{2}}{4} \bar{x}=\rho \frac{a^{3}}{3} \\
\& \bar{x}=\frac{4 a}{3 \pi} \quad, \quad \bar{y}=\frac{4 a}{3 \pi} \text { by symmetry } * \mathrm{AG}^{*}
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1A1 \\
A1 \\
A1 \\
M1 \\
A1,A1
\end{tabular} \\
\hline (b) \& \begin{tabular}{l}
\begin{tabular}{|l|l|l|l|}
\hline Area \& \(2 a^{2}\) \& \(\frac{\pi a^{2}}{4}\) \& \(-\frac{\pi a^{2}}{4}\) \\
\hline Distance to \(A E\) \& \(\frac{a}{2}\) \& \(a+\frac{4 a}{3 \pi}\) \& \(a-\frac{4 a}{3 \pi}\) \\
\hline
\end{tabular} \\
Moments about \(A E: \quad 2 a^{2} \bar{x}=2 a^{2} \frac{a}{2}+\frac{\pi a^{2}}{4}\left(a+\frac{4 a}{3 \pi}\right)-\frac{\pi a^{2}}{4}\left(a-\frac{4 a}{3 \pi}\right)\)
\[
\begin{aligned}
\& =a^{3}+\frac{2 a^{3}}{3}=\frac{5 a^{3}}{3} \\
\& \bar{x}=\frac{5 a^{3}}{3} \times \frac{1}{2 a^{2}}=\frac{5 a}{6}
\end{aligned}
\]
\end{tabular} \& B1
M1A2

A1

\hline (c) \& Taking moments about $E: \quad \begin{aligned} 2 a X & =\frac{5 a}{6} W \\ X & =\frac{5}{12} W\end{aligned} \quad$ their \bar{x} \& M1A1ft
A1

\hline | 6 |
| :--- |
| (a) v2 | \& \[

$$
\begin{aligned}
& \text { Mass of quadrant }=\rho \frac{\pi a^{2}}{4} \\
& \qquad \begin{array}{l}
\int_{0}^{\frac{\pi}{2}} \rho \cdot \frac{1}{2} a^{2} \cdot \frac{2}{3} a \cos \theta \mathrm{~d} \theta=\left[\frac{a^{3}}{3} \sin \theta\right]_{0}^{\frac{\pi}{2}}=\rho \frac{a^{3}}{3} \\
\quad \rho \frac{\pi a^{2}}{4} \bar{x}=\rho \frac{a^{3}}{3}
\end{array}
\end{aligned}
$$
\] \& B1

$$
\mathrm{M} 1 \mathrm{~A} 1,=\mathrm{A} 1
$$

M1

\hline \& $\bar{x}=\frac{4 a}{3 \pi} \quad, \quad \bar{y}=\frac{4 a}{3 \pi}$ by symmetry *AG* \& A1A1

$$
\begin{gathered}
\text { (7) } \\
{[15]}
\end{gathered}
$$

\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036430 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)
Summer 2013

GCE Mechanics 3 (6679/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036427
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as $A \mathrm{ft}$.

Question Number	Scheme	Marks
1.	$\mathrm{R}(\uparrow) \quad R=m g$	
	$F=\mu m g$	B1
	$20 \text { revs per min }=\frac{20}{60} \times 2 \pi \mathrm{rad} \mathrm{~s}^{-1}$	M1A1
	$\left(=\frac{2}{3} \pi \operatorname{rad~s}^{-1}\right)$	
	$\mathrm{R}(\rightarrow) \quad \mu m g=m \times 0.4 \times\left(\frac{2}{3} \pi\right)^{2}$	M1A1ft
	$\mu=\frac{0.4 \times 4 \pi^{2}}{9 g}$	
	$\mu=0.18$ or 0.179	A1
		[6]

Notes for Question 1

B1 for resolving vertically and using $F=\mu R$ to obtain $F=\mu m g$. This may not be seen explicitly, but give B1 when seen used in an equation.

M1 for attempting to change revs per minute to rad s ${ }^{-1}$, must see (2) π. (Can use 60 or 60^{2})
A1 for $\frac{20}{60} \times 2 \pi \quad\left(\operatorname{rad~s}^{-1}\right)$ oe
M1 for NL2 horizontally along the radius - acceleration in either form for this mark, F or $\mu \mathrm{mg}$ or $\mu \mathrm{m}$ all allowed. r to be 0.4 now or later. This is not dependent on the previous M mark.

A1ft for $\mu m g=m \times 0.4 \times\left(\frac{2}{3} \pi\right)^{2}$ follow through on their ω
A1cso for $\mu=0.18$ or 0.179 , must be 2 or $\mathbf{3} \mathbf{~ s f}$.

NB: Use of \leqslant : is allowed, provided used correctly, until the final statement, which must be $\mu=\ldots$.

Question Number	Scheme	Marks
(a)	$\begin{aligned} & \left(2 t+\frac{1}{2}\right)=0.5 \frac{\mathrm{~d} v}{\mathrm{~d} t} \\ & \int(4 t+1) \mathrm{d} t=\int \mathrm{d} v \end{aligned}$	M1
	$2 t^{2}+t=v+c$ $t=0 v=0 \quad c=0$	M1dep c not needed
	$v=2 t^{2}+t \mathrm{~m} \mathrm{~s}^{-1}$ $\frac{\mathrm{d} x}{\mathrm{~d} t}=2 t^{2}+t$	A1 inc the value for c (3)
(b)	$x=\frac{2}{3} t^{3}+\frac{1}{2} t^{2}+k$ $t=0 x=0 \quad k=0$	M1
	$\begin{aligned} & x=\frac{2}{3} t^{3}+\frac{1}{2} t^{2} \\ & v=6 \quad 6=2 t^{2}+t \quad 2 t^{2}+t-6=0 \end{aligned}$	A1
	$(2 t-3)(t+2)=0 \quad t=\frac{3}{2}$	M1A1
	$x=\frac{2}{3} \times\left(\frac{3}{2}\right)^{3}+\frac{1}{2}\left(\frac{3}{2}\right)^{2}$	M1dep
	$x=\frac{27}{8}(\mathrm{oe} 3.4,3.375,3.38) \mathrm{m}$	A1 cso (6) [9]

Notes for Question 2

(a)

M1 for NL2 with acceleration in the form $\frac{\mathrm{d} v}{\mathrm{~d} t}$, seen explicitly or implied by the integration mass can be 0.5 or m
M1dep for integrating with respect to t - constant not needed
A1cso for showing that $c=0$ and giving the final result $v=2 t^{2}+t$ Must see $t=0, v=0$ as a minimum

By definite integration:
M1 as above
M1dep for integrating, ignore limits
A1 for substituting the limits 0 and v and 0 and t and obtaining $v=2 t^{2}+t$
(b)

M1 for integrating their v with respect to $t \quad$ constant not needed
A1 for showing that $k=0$ If no constant shown this mark is lost.
M1 for setting $v=6$ using their answer from (a) and attempting to solve the resulting quadratic equation, any valid method. If solved by calculator, both solutions must be shown.
A1 for $t=\frac{3}{2}$ negative solution need not be shown with an algebraic solution
M1dep for using their (positive) value for t to obtain $x=\ldots$. If two positive values were obtained, then allow M1 for substituting either value. Dependent on the first M1 of (b) but not the second.
A1cso for $x=\frac{27}{8}$ (oe eg 3.375, 3.38) (All marks for (b) must have been awarded)

By definite integration:

M1 for integrating their v with respect to $t \quad$ limits not needed
A1 for correct integration with lower limits 0 .
M1 for setting $v=6$ using their answer from (a) and attempting to solve the resulting quadratic equation, any valid method. If solved by calculator, both solutions must be shown.
A1 for $t=\frac{3}{2}$ negative solution need not be shown with an algebraic solution
M1dep for substituting their limits into their integrated v (sub should be shown). Dependent on the first M1 of (b) but not the second
A1cso for $x=\frac{27}{8}$ (oe eg 3.375, 3.38)

Notes for Question 3

In this question, award marks as though the question is not divided into two parts - ie give marks for equations wherever seen.
(i)

B1 for using Q (no need to state Q being used) to state that $T=2 \mathrm{mg}$ or $T_{Q}=2 \mathrm{mg}$ with $T_{P}=T_{Q}$ seen or implied later.

M1 for attempting to resolve vertically for $P \quad T$ must be resolved but $\sin / c o s$ interchange or omission of g are accuracy errors.
$m g+2 m g=T+T \cos \theta$ gets M0
A1cso for combining the two equations to obtain $\theta=60^{\circ} *$
NB: This is a "show" question, so if no expression is seen for T and just $2 m g \cos \theta=m g$ shown, award $0 / 3$ as this equation could have been produced from the required result, so insufficient working.
(ii)

M1 for attempting NL2 for P along the radius. The mass used must be m if the particle is not stated to be P; a mass of $2 m$ would imply use of Q. $\quad T$ must be resolved. Acceleration can be in either form.
A1 for $T \sin \theta=m r \omega^{2}$ or $T \frac{\sqrt{3}}{2}=m r \omega^{2}$
M1 dep for eliminating T between the two equations for P and substituting for r in terms of l and θ dependent on the second but not the first M mark.
A1 for $2 m g \sin \theta=m \times 5 l \sin \theta \times \omega^{2}$ or $\frac{T \sin \theta}{T \cos \theta}=\tan \theta=5 l \sin \theta\left(\frac{\omega^{2}}{g}\right) \quad \theta$ or 60°
A1cso for re-arranging to obtain $\omega=\sqrt{\frac{2 g}{5 l}} \quad * \quad$ ensure the square root is correctly placed

Alternatives: Some candidates "cancel" the $\sin \theta$ without ever showing it.
M1A1 for $T=m \times 51 \omega^{2}$
M1A1 for $2 \mathrm{mg}=5 \mathrm{ml} \omega^{2}$
A1cso as above
Vector Triangle method: Triangle must be seen $T=2 \mathrm{mg} \quad$ B1
$\cos \theta=\frac{m g}{2 m g}$
M1
$\theta=60^{\circ}$
Correct triangle
A1
$\sin \theta=\frac{5 m l \sin \theta \omega^{2}}{2 m g}$
M1A1
M1A1
$\omega=\ldots$
A1cso (as above)

Notes for Question 4

(a)

M1 for attempting Hooke's Law, formula must be correct, either explicitly or by correct substitution.
A1 for $20=\frac{\lambda \times 0.3}{1.2}$
A1 for obtaining $\lambda=80$
B1 for the initial EPE $\frac{" \lambda " \times 0.3^{2}}{2.4}(=3 \mathrm{~J})$ their value for λ allowed. May only be seen in the eqaution.

M1 for a work-energy equation with one EPE term, one KE term and work done against friction (Award if second EPE/KE terms included provided these become 0). The EPE must be dimensionally correct, but need not be fully correct (eg denominator 1.2 instead of 2.4)

A1ft for a completely correct equation follow through their EPE
A1 cao for $v=0.80$ or 0.805 must be 2 or 3 sf
NB: This is damped harmonic motion (due to friction) so all SHM attempts lose the last 4 marks.
(b)

M1 for any complete method leading to a value for either $B C$. If the distance travelled after the string becomes slack is found the work must be completed by adding 0.3 Their EPE found in (a) used in energy methods.

MS method is energy from B to C ie work done against friction $=$ loss of EPE.
OR Energy from point where the string becomes slack to C ie work done against friction $=$ loss of KE and completed for the required distance

OR NL2 to obtain the acceleration $\left(-\frac{2 g}{5}\right)$ while the string is slack and $v^{2}=u^{2}+2 a s$ to find the distance and completed for the required distance

A1cso for $B C=0.38$ or 0.383 (m) must be 2 or $\mathbf{3}$ sf

Question Number	Scheme	Marks
5(a)	$\begin{aligned} & V=\int_{0}^{2} \pi y^{2} \mathrm{~d} x=\pi \int_{0}^{2}(x+1)^{4} \mathrm{~d} x \\ & =\pi\left[\frac{1}{5}(x+1)^{5}\right]_{0}^{2} \\ & =\frac{1}{5} \pi\left[3^{5}-1\right] \quad\left(=\frac{242 \pi}{5}\right) \end{aligned}$	M1 A1 M1
	$\begin{aligned} & \int_{0}^{2} \pi y^{2} x \mathrm{~d} x=\pi \int_{0}^{2} x(x+1)^{4} \mathrm{~d} x \\ & =\pi\left[\frac{x(x+1)^{5}}{5}\right]_{0}^{2}-\pi \int_{0}^{2} \frac{(x+1)^{5}}{5} \mathrm{~d} x,=\frac{2 \times 3^{5} \pi}{5}-\pi\left[\frac{(x+1)^{6}}{30}\right]_{0}^{2} \\ & {\left[\frac{2 \times 3^{5}}{5}-\frac{3^{6}}{30}+\frac{1}{30}\right] \pi \quad(=72.933 \ldots \pi)} \end{aligned}$	M1 A1 M1
	$\begin{aligned} & \text { ALT: by expanding }=\pi \int_{0}^{2}\left(x^{5}+4 x^{4}+6 x^{3}+4 x^{2}+x\right) \mathrm{d} x \\ & =\pi\left[\frac{x^{6}}{6}+\frac{4}{5} x^{5}+\frac{6}{4} x^{4}+\frac{4}{3} x^{3}+\frac{1}{2} x^{2}\right]_{0}^{2} \\ & =\pi\left[\frac{2^{6}}{6}+\frac{4}{5} \times 2^{5}+\frac{6}{4} \times 2^{4}+\frac{4}{3} \times 2^{3}+\frac{1}{2} \times 2^{2}\right] \end{aligned}$	M1A1 M1
	OR by subst: $\pi \int_{1}^{3}(u-1) u^{4} \mathrm{du},=\pi\left[\frac{u^{6}}{6}-\frac{u^{5}}{5}\right]_{1}^{3},=\pi\left[\frac{3^{6}}{6}-\frac{3^{5}}{5}-\left(\frac{1}{6}-\frac{1}{5}\right)\right]$	M1A1M1
(b)	$\bar{x}=\frac{\pi\left[\frac{2 \times 3^{5}}{5}-\frac{3^{6}-1}{30}\right]}{\frac{242 \pi}{5}} \text { OR } \frac{\pi\left[\frac{2^{6}}{6}+\frac{4 \times 2^{5}}{5}+\frac{6 \times 2^{4}}{4}+\frac{4 \times 2^{3}}{3}+\frac{2^{2}}{2}\right]}{\frac{242 \pi}{5}},=1.5068$	M1, A1 (8)
	Mass ratio $\quad 10 \times \frac{2 \pi}{3} \times 1 \quad \frac{242 \pi}{5} \quad\left(\frac{20}{3}+\frac{242}{5}\right) \pi=\frac{826}{15} \pi$	B1ft on S
	$\begin{aligned} & \text { Dist from } A \quad 2+\frac{3 \times 1}{8} \\ & \frac{20}{3} \times \frac{19}{8}+\frac{242}{5} \times 0.493=\left(\frac{20}{3}+\frac{242}{5}\right) \bar{x} \end{aligned}$	B1ft on S M1A1ft
	$\bar{x}=0.7208 \ldots \mathrm{~cm} \quad$ (awrt 0.72)	A1 (5) $[13]$

Notes for Question 5

NB: Some candidates will omit π throughout (as they know it cancels). In such cases award all marks if earned. If π is omitted from one integration only but then appears in the result of that integration at the last stage or is then omitted from the second integration, all marks can be gained. But if omitted from one integration, including the last stage, and included with the other mark strictly according to the MS.
(a)

M1 for using $V=\int_{0}^{2} \pi y^{2} \mathrm{~d} x=\pi \int_{0}^{2}(x+1)^{4} \mathrm{~d} x$ - limits not needed and attempting the integration by inspection or expansion (algebra must be seen)
A1 for correct integration - limits not needed
M1 for substituting the correct limits into their integrated function - no need to simplify
M1 for attempting to integrate $\int_{0}^{2} \pi y^{2} x \mathrm{~d} x=\pi \int_{0}^{2} x(x+1)^{4} \mathrm{~d} x$ - limits not needed - by parts. This mark can be awarded once the integral has been expressed as the difference of an appropriate integrated function and an integral

A1 for correct, complete integration $\pi\left[\frac{x(x+1)^{5}}{5}\right]_{0}^{2}-\pi\left[\frac{(x+1)^{6}}{30}\right]_{0}^{2}$ or $\frac{2 \times 3^{5} \pi}{5}-\pi\left[\frac{(x+1)^{6}}{30}\right]_{0}^{2}$ Limits not needed
M1 for substituting the correct limits into their integrated function - no need to simplify
Alternative methods for $\int_{0}^{2} \pi y^{2} x \mathrm{~d} x=\pi \int_{0}^{2} x(x+1)^{4} \mathrm{~d} x$
M1 for expanding and integrating or making a suitable substitution and attempting the integration - limits not needed
A1 for correct integration - limits not needed
M1 for substituting the correct limits into their integrated function - no need to simplify
M1 for using $\bar{x}=\frac{\int \pi y^{2} x \mathrm{~d} x}{\int \pi y^{2} \mathrm{~d} x}$ Their integrals need not be correct.
A1cao for $\bar{x}=1.5068 \ldots$ Accept $1.5,1.51$ or better or $\frac{547}{363}$
(b)

B1ft for correct mass ratio, follow through their volume for S need π now
B1ft for correct distances, follow through their distance for S, but remember it must be 2 - answer from (a) if working from A. Distances from the common face are $-\frac{3}{8}$, ans from (a), \bar{x} Distances from other end are $\frac{5}{8}, 1+$ ans from (a), \bar{x}
M1 for a dimensionally correct moments equation
A1ft for a fully correct moments equation, follow through their distances and mass ratio
A1cao for $0.7208 \ldots$ Accept 0.72 or better (Exact is $\frac{1191}{1652}$)

Notes for Question 6

(a)

M1 for using Hooke's Law for each string, equating the two tensions and solving to find the extension in either string. The extensions should add to 1.5 . The formula for Hooke's law must be correct, either shown explicitly in its general form or implicitly by the substitution.

A1 for a correct equation
A1 for $e=0.9$
A1cso for 2.4 (m) *

Alternative: Find the ratio of the two extensions and divide 1.5 m in that ratio.
M1 complete method A1 correct ratio A1 extension in $A O$
A1 2.4 (m)
(b)

M1 for an equation of motion for P. There must be a difference of two tensions. The acceleration can be a or \ddot{x} here and x should be measured from the equilibrium position (O) unless a suitable substitution is made later. Mass can be m or 0.8

A1,A1 for $\frac{18(0.6-x)}{0.75}-\frac{24(0.9+x)}{1.5}=m \ddot{x}$ or $0.8 \ddot{x}$ or a instead of $\ddot{x} \quad$ Give A1A1 if the equation is completely correct and A1 if only one error. Note that if the difference of the tensions is the wrong way round, this is one error

M1dep for simplifying to $\ddot{x}=\mathrm{f}(x)$ Must be \ddot{x} now.
A1 for $\ddot{x}=-\frac{40 x}{0.8 \text { or } m}(=-50 x)$ and the conclusion (ie $\left.\therefore \mathrm{SHM}\right)$
(c)

B1 for $\omega=\sqrt{50}$ or $5 \sqrt{2}$ need not be shown explicitly
M1 for using max speed $=a \omega=\sqrt{2}$ with their ω
A1 for $a=\frac{1}{5}$

M1 for using $x=a \cos \omega t$ with their ω and a and $x= \pm(0.3-a)$ or $x=a \sin \omega t$ provided the work is completed by adding a quarter of their period is added to the time to complete the method.

A1cao for $t=\frac{\pi \sqrt{2}}{15}$ or $0.296 \mathrm{~s}(0.2961 \ldots)$ Accept 0.30 or better

Question Number	Scheme	Marks
7(a)	$T-5 m g \cos \theta=\frac{5 m v^{2}}{a}$	M1A1
	$\frac{1}{2} \times 5 m v^{2}-\frac{1}{2} \times 5 m \times \frac{9 a g}{5}=5 m g a \cos \theta$	M1A1
	$5 m v^{2}=10 m g a \cos \theta+9 m g a$	
	$T=5 m g \cos \theta+10 m g \cos \theta+9 m g$	M1dep
	$T=3 m g(5 \cos \theta+3) \quad *$	A1 (6)
(b)	$T=0 \cos \theta=-\frac{3}{5}$	B1
	$v^{2}=\frac{9 a g}{5}-\frac{6 a g}{5}=\frac{3 a g}{5}$	M1
	$v=\sqrt{\frac{3 a g}{5}}$	A1 (3)
(c)	horiz comp of vel at $B=\sqrt{\frac{3 a g}{5}} \times \frac{3}{5}$	M1
	$\text { vert comp }=\sqrt{\frac{3 a g}{5}} \times \frac{4}{5}$	M1
(i)	$x=-\frac{4 a}{5}+\frac{3}{5} \sqrt{\frac{3 a g}{5}} t$	M1depA1
	$y-\frac{3 a}{5}=\frac{4}{5} \sqrt{\frac{3 a g}{5}} t-\frac{1}{2} g t^{2}$	M1depA1ft
(ii)	$y=\frac{4}{5} \sqrt{\frac{3 a g}{5}} t-\frac{1}{2} g t^{2}+\frac{3 a}{5}$	A1 (7)
		[16]

Notes for Question 7

(a)

M1 for attempting NL2 along the radius when the string makes an angle θ with the downward vertical. The acceleration can be in either form, the weight must be resolved and T must be included (not resolved). Sin/cos interchange or omission of g are accuracy errors as is omission of 5 in one or both terms. Radius can be a or r.
A1 for a correct equation $T-5 m g \cos \theta=\frac{5 m v^{2}}{a}$ Acceleration must be in the $\frac{v^{2}}{r}$ form now.

M1 for a conservation of energy equation from the horizontal to the same point. There must be a difference of 2 KE terms and a loss of PE term (which may be indicated by a difference of 2 PE terms). The initial KE can be $\frac{1}{2} \times \operatorname{mass} \times\left(\sqrt{\frac{9 a g}{3}}\right)^{2}$ or $\frac{1}{2} \times m a s s \times u^{2}$ for this mark. Omission of g and $\sin /$ cos interchange are accuracy errosr. Mass can be m or $5 m$ here or just "mass". Use of $v^{2}=u^{2}+2 a s$ gets M0

A1 for a fully correct equation $\frac{1}{2} \times(5 m) v^{2}-\frac{1}{2} \times(5 m) \times \frac{9 a g}{5}=(5 \mathrm{~m}) g a \cos \theta$
M1dep for eliminating v^{2} between the 2 equations. Dependent on both previous M marks.

A1cso for $T=3 m g(5 \cos \theta+3)$ *
(b)

B1 for obtaining $\cos \theta=-\frac{3}{5}$

M1 for using their value for $\cos \theta$ - must be numerical - in the energy equation to get $v^{2}=\ldots$ (no need to simplify) Accept with $5 m$ or m.
OR making $T=0$ and $\cos \theta=-\frac{3}{5}$ (their value) in $T-5 m g \cos \theta=\frac{5 m v^{2}}{a}$
A1cao for $v=\sqrt{\frac{3 a g}{5}}$ oe Check square root is applied correctly.
(c)

M1 for resolving their v to get the horizontal component of the speed at B. May not be seen explicitly, but seen in their attempt at x.

M1 for resolving their v to get the vertical component of the speed at B
Both of these M marks can be given if \sin and \cos are interchanged or numerical substitutions not made.
M1dep for attempting to obtain x by using the distance from B to the y-axis with the horizontal distance travelled (found using their horizontal component, so dependent on the first M1 of (c))

A1cso for $x=-\frac{4 a}{5}+\frac{3}{5} \sqrt{\frac{3 a g}{5}} t$

Notes for Question 7 Continued

M1dep for attempting to obtain y by using $s=u t+\frac{1}{2} a t^{2}$ with their vertical component and using the initial vertical distance above the x-axis. Dependent on the second M mark of (c)

A1ft for $y-\frac{3 a}{5}=\frac{4}{5} \sqrt{\frac{3 a g}{5}} t-\frac{1}{2} g t^{2}$ Follow through their initial vertical component
A1cao for $y=\frac{4}{5} \sqrt{\frac{3 a g}{5}} t-\frac{1}{2} g t^{2}+\frac{3 a}{5}$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036427 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

edexcel

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Mechanics 3 (WME03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037823
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Notes From Chief Examiner

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme		Marks
1.	$\begin{aligned} & v=\sqrt{\left(8 x^{\frac{3}{2}}-4\right)} \\ & v^{2}=\left(8 x^{\frac{3}{2}}-4\right) \\ & 2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=12 x^{\frac{1}{2}} \\ & F=0.5 \times 6 x^{\frac{1}{2}}=3 x^{\frac{1}{2}} \\ & x=4 \Rightarrow F=6 \end{aligned}$		$\begin{aligned} & \text { M1 A1 A1 } \\ & \text { M1dep } \quad \text { A1 } \end{aligned}$
Notes			
	M1 for attempting to differentiate the expression must be used on lhs. A1 for correct $x^{\frac{1}{2}}$ A1 for 6 Award both only if work fully corre M1dep for using NL2 with $m=0.5$ to obtain an exp of x A1cso for $F=6$ Alternatives: for the first 3 marks $\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{1}{2}\left(8 x^{\frac{3}{2}}-4\right)^{-\frac{1}{2}} \times 12 x^{\frac{1}{2}} \\ & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{2 v} \times 12 x^{\frac{1}{2}} \quad v \frac{\mathrm{~d} v}{\mathrm{~d} x}=6 x^{\frac{1}{2}} \\ & \frac{\mathrm{~d} v}{\mathrm{dt}}=\frac{1}{2}\left(8 x^{\frac{3}{2}}-4\right)^{-\frac{1}{2}} \times 12 x^{\frac{1}{2}} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \\ & \frac{\mathrm{~d} v}{\mathrm{dt}}=\frac{1}{2}\left(8 x^{\frac{3}{2}}-4\right)^{-\frac{1}{2}} \times 12 x^{\frac{1}{2}} \times\left(8 x^{\frac{3}{2}}-4\right)^{\frac{1}{2}}=6 x^{\frac{1}{2}} \end{aligned}$	for v^{2} - chain rule ession for F in terms M1 Must be a complete method to obtain accel in terms of x A1rhs A1lhs M1A1A1 Award as above	

Question Number	Scheme	Marks			
$\mathbf{2}$	$\frac{2 m g}{2 l}\left(\left(\frac{1}{2} l\right)^{2}-x^{2}\right)=\frac{1}{4} m g\left(\frac{1}{2} l+x\right)$				
	$8 x^{2}+2 l x-l^{2}=0$ $(4 x-l)(2 x+l)=0$ $x=\frac{1}{4} l$ or $-\frac{1}{2} l$ distance $=\frac{1}{2} l+\frac{1}{4} l=\frac{3}{4} l$	M1A1;M1 A 1			
	Notes A1				
					M1dep
		A1			

M1 for the difference of 2 elastic energy terms, not nec in a complete energy equation.
A1 for a correct difference
M1 for a work energy equation, loss of EPE = work done against friction(not dep on previous mark)

A1 for a fully correct equation
M1dep for re-arranging to a three term quadratic, dependent on the second M mark, or use the difference of 2 squares to get a linear equation

A1 for a correct 3 term quadratic, terms in any order
M1dep for solving the resulting quadratic, usual rules. Dependent on all second and third M marks
A1 \quad for $x=\frac{1}{4} l \quad x=-\frac{1}{2} l$ need not be shown
A1cao and cso distance $=\frac{3}{4} l$

Question Number	Scheme	Marks
$\mathbf{3}$		M1 A1

Notes for Question 4

A note about π : (a) is a "show that" so π must be included throughout (unless a put in at the end of (a), with a convincing argument for doing so). No answer given in (b), so allow the first 5 marks (as earned) without π provided either no $\pi \mathrm{s}$ or both $\pi \mathrm{s}$ appear for the final 2 marks. If the final fraction has the denominator π only, the last 3 marks will be lost
(a)

M1 for using $V=\pi \int y^{2} \mathrm{~d} x=\pi \int \mathrm{e}^{-2 x} \mathrm{~d} x$ and attempting the integration. limits not needed for this mark
A1 for correct integration, correct limits must be shown
A1cso for $V=\frac{\pi}{2}\left(1-\mathrm{e}^{-2}\right) * \quad$ Must be seen in this form
(b)

M1 for attempting the integration of $\pi \int x \mathrm{e}^{-2 x} \mathrm{~d} x$ by parts - limits not needed yet. Allow if intention to integrate $\pi \int x y^{2} \mathrm{~d} x$ is shown.
A1 for a correct result with or w/o limits (check signs carefully)
M1dep for attempting the next integral, limits not needed
A1 ft for substituting the correct limits in their integral
A1cao for $\pi\left(\frac{1}{4}-\frac{3}{4} \mathrm{e}^{-2}\right)$ oe
M1 for using $\bar{x}=\frac{(\pi) \int x y^{2} \mathrm{~d} x}{(\pi) \int y^{2} \mathrm{~d} x}$ with their integrals, must be the correct way up.
A1 for $\bar{x}=\frac{\left(\mathrm{e}^{2}-3\right)}{2\left(\mathrm{e}^{2}-1\right)}$ oe must be in terms of e. Must have only 2 terms in each of the numerator and denominator and no fractions in either.

Question Number	Scheme	Marks
6(a)	$(6 a)^{2}+(8 a)^{2}=(10 a)^{2}$by Pythag (converse), APB $=90^{\circ}$ PRINTED ANSWER	M1
(b)		A1 (2)
	$T_{1} \sin \alpha+T_{2} \cos \alpha=m r \omega^{2}$	M1 A2
	$T_{1} \cos \alpha-T_{2} \sin \alpha=m g$	M1 A1
	$r=8 a \sin \alpha$	M1 A1
	$\sin \alpha=\frac{3}{5} \quad$ or $\quad \cos \alpha=\frac{4}{5}$	B1
	solving, $T_{2}=\frac{3 m}{25}\left(32 a \omega^{2}-5 g\right)$	M1
	$T_{2} \geq 0 \Rightarrow \omega=\sqrt{\frac{5 g}{32 a}}$	M1 A1
	$\text { max time }=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{32 a}{5 g}} \text { PRINTED ANSWER }$	$\begin{array}{ll} \text { M1A1 } & \text { (13) } \\ & \mathbf{1 5} \end{array}$

Notes for Question 6

(a)

M1 for squaring the sides and showing they fit Pythagoras' theorem or ratio of sides 3:4:5 or use the cosine rule
A1cso for stating that (the converse of) Pythagoras' theorem shows that $A P B=90^{\circ} *$ or appropriate conclusion for their method
(b)

M1 for NL2 horizontally. There must be two tensions, both resolved, but may be the same, and an acceleration (either form accepted here) Sine/cos interchange is an accuracy error.
A1 for any two correct terms
A1 for the third correct term. Acceleration must be in the form $m r \omega^{2}$ and tensions must be different for both these marks to be awarded
M1 for resolving vertically. Again, two tensions, both resolved but may be the same, and sine/cos interchange is an accuracy error.
A1 for a fully correct equation with different tensions.
M1 for finding the radius as $r=8 a \sin \alpha$ or $8 a \cos \alpha$
A1 for $r=8 a \sin \alpha$ May not be shown explicitly
B1 for a correct value for $\sin \alpha$ or $\cos \alpha$
M1dep for solving to obtain an expression for T_{2} in terms of m, g, a, ω. Dependent on all M marks above and two different tensions. Or making $T_{2}=0$ in the above equations and solving for ω
M1dep for using $T_{2} \geqslant 0$ in their expression for T_{1} to obtain an expression for ω in terms of g and a Dependent on the previous M mark $T_{2}<0$ gets M0
A1 for $\omega_{\min }=\sqrt{\frac{5 g}{32 a}}$ oe
M1 for using $\frac{2 \pi}{\omega}$ with their ω to obtain the maximum time
A1cso for max time $=2 \pi \sqrt{\frac{32 a}{5 g}}$

Question Number	Scheme	Marks
7 (a)	$\begin{aligned} \frac{8 m g e}{l} & =m g \\ e & =\frac{1}{8} l \end{aligned}$	M1 A1 (2)
	$\begin{aligned} &-m g-T=m \ddot{x} \\ &-m g-\frac{8 m g}{l}\left(x-\frac{1}{8} l\right)=m \ddot{x} \\ &-\frac{8 g}{l} x=\ddot{x} \end{aligned}$ SHM, period $2 \pi \sqrt{\frac{l}{8 g}}$ PRINTED ANSWER	M1 A1 M1dep A1 A1 A1cso (6)
(c)	$\begin{aligned} & a=\frac{1}{2} l-\frac{1}{8} l=\frac{3}{8} l \\ & u^{2}=\frac{8 g}{l}\left(\left(\frac{3}{8} l\right)^{2}-\left(\frac{-1}{8} l\right)^{2}\right) \\ & u=\sqrt{g l} \end{aligned}$	B1 M1 A1 A1 (4)
(d)	$\begin{aligned} & x=-a \cos \omega t \\ & \dot{x}=a \omega \sin \omega t \\ & \sqrt{\frac{9 g l}{32}}=\frac{3 l}{8} \sqrt{\frac{8 g}{l}} \sin \sqrt{\frac{8 g}{l}} t \\ & \frac{1}{2}=\sin \sqrt{\frac{8 g}{l}} t \\ & t=\frac{\pi}{6} \sqrt{\frac{l}{8 g}} \end{aligned}$	M1 A1 M1dep A1 (4)
		16

Notes for Question 7

(a)

M1 for Hooke's law and equating tension to weight
A1cao for $e=\frac{1}{8} l$
(b)

M1 for NL2 vertically, weight and tension needed, \ddot{x} or a for acceleration here
A1 for a correct equation with \ddot{x} or a
M1dep for using HL to replace the tension with an expression in terms of x Dependent on the previous M mark Must have \ddot{x} now
A1 for this equation correct
A1 for re-arranging to get $-\frac{8 g}{l} x=\ddot{x}$ oe
A1cso for the conclusion SHM and the period $2 \pi \sqrt{\frac{l}{8 g}} *$
(c)

B1 for using the information in the question to obtain amp $=\frac{3}{8} l$
M1 for using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with their ω and a
A1 for a correct, unsimplified expression for u^{2} in terms of l and g
A1cao for $u=\sqrt{g l}$
By energy: B1 for EPE, M1 equation, A1 correct equation, A1 answer
(d)

M1 for using $\dot{x}=a \omega \sin \omega t$ (or v instead of \dot{x}) with their a and ω and the given speed
A1 for a fully correct equation
M1dep for solving their equation must use radians
A1cao for $t=\frac{\pi}{6} \sqrt{\frac{l}{8 g}} \quad$ or $0.5235 \ldots \sqrt{\frac{l}{8 g}}$ oe. (if sub for g seen, must be 2 or 3 sf)
Alternative for (d):
Use $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with their ω and a and the given speed

Use $x=a \cos \omega t \quad$ with their x, ω and a and solve in radians M1dep
$t=\frac{\pi}{6} \sqrt{\frac{l}{8 g}} \quad$ or $0.5235 \ldots \sqrt{\frac{l}{8 g}}$ oe. (if sub for g seen, must be 2 or 3 sf)

edexcel ${ }^{\text {iti }}$

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Mechanics 3R (6679/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
' A ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

6. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF .
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks
1 (a)		M1 A1
	$\frac{\mathrm{d} v}{\mathrm{dv}}=3 \Rightarrow>v=3 x-3$	DM1
	$a=3(3 x-3)$	A1 (4)
	When $x=5, F=0.25 \times 3(15-3)=9 \mathrm{~N}$	
		M1
(b)	$\frac{\mathrm{d} x}{x}=3(x-1)$	A1
	$\int^{5} \mathrm{~d} x$	DM1
	$[\ln (x-1)]_{2}^{5}=3 t$	A1
	$t=\frac{1}{3} \ln 4=0.4620 \ldots$	(4)
		8
Notes		
(a)	M1 Integration A1 correct integration DM1 using $a=v \mathrm{~d} v / \mathrm{d} x$ with their v A1 correct integration	
(b)	M1 using $\frac{\mathrm{d} x}{\mathrm{~d} t}=3(x-1)$ A1 correct integrals with correct limits DM1 Substitute the limits A1 correct final answer	

Question Number	Scheme	Marks
2(a)	$\begin{aligned} & T \sin 60^{\circ}+R \sin 60^{\circ}=m g \\ & T \cos 60^{\circ}-R \cos 60^{\circ}=m l \cos 60^{\circ} \omega^{2} \\ & T=\frac{1}{2} m\left(l \omega^{2}+\frac{2}{\sqrt{3}} g\right) \end{aligned}$	M1 A1 M1 A1 A1 DM1 A1
(b)	$\begin{aligned} & R=\frac{1}{2} m\left(\frac{2}{\sqrt{3}} g-l \omega^{2}\right) \\ & \frac{1}{2} m\left(\frac{2}{\sqrt{3}} g-l \omega^{2}\right)>0 \\ & \omega<\sqrt{\frac{2 g}{l \sqrt{3}}} \\ & t>2 \pi \sqrt{\frac{l \sqrt{3}}{2 g}} * * \end{aligned}$	M1 A1 DM1 A1 DM1 A1 (6) 13
Notes		
(a)	M1 vertical equation A1 correct vertical equation M1 horizontal equation, acceleration in either form A1 correct lhs A1 correct rhs DM1 solve for T A1 correct T M1 obtain an expression for R A1 correct expression DM1 setting $R>0$ A1 correct inequality for w DM1 obtaining an inequality for t A1 correct inequality	

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {arks }}\) \\
\hline 3 (a)

(b) \&

\hline \multicolumn{2}{|r|}{Notes}

\hline (a)

(b) \& | B1 correct equation perpendicular to the plane |
| :--- |
| B1 correct expression for work done against friction |
| M1 work-energy equation |
| A2 fully correct; A1 one error; |
| A1 correct expression for x no errors in the working |
| B1 use Hooke's law to obtain a correct expression for T |
| M1 using NL2 parallel to the plane to set up an inequality for situation where no motion |
| A1 correct inequality |
| DM1 solving to get an inequality for μ |
| A1 correct inequality and no errors in the working |
| If only error is use of $<$ instead of \leqslant, deduct final A mark only |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline \multirow[t]{2}{*}{6(a)} \& \[
\begin{aligned}
\frac{4 m g e}{l} \& =m g \\
e \& =\frac{1}{4} l
\end{aligned}
\] \& M1
(2) \\
\hline \& \[
\begin{array}{r}
m g-T=m \ddot{x} \\
m g-\frac{4 m g}{\left(x+\frac{1}{-} l\right)}=m \ddot{x}
\end{array}
\] \& \[
\begin{aligned}
\& \text { M1 A1 } \\
\& \text { M1 }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{(b)

(c)} \& \[
$$
\begin{array}{r}
-\frac{4 g}{l} x=\ddot{x} \\
\text { SHM, }\left(\text { with } \omega=\sqrt{\frac{4 g}{l}}\right)
\end{array}
$$

\] \& | A1 |
| :--- |
| A1 (5) |

\hline \& \[
$$
\begin{aligned}
\sqrt{g l} & =a \sqrt{\frac{4 g}{l}} \\
a & =\frac{1}{2} l
\end{aligned}
$$

\] \& | M1 A1 |
| :--- |
| A1 (3) |

\hline (d) \& \[
$$
\begin{aligned}
-\frac{1}{4} l & =\frac{1}{2} l \sin \sqrt{\frac{4 g}{l}} t \\
t & =\frac{7 \pi}{12} \sqrt{\frac{l}{g}}
\end{aligned}
$$

\] \& | M1 A1 |
| :--- |
| M1 A1 |
| (4) 14 |

\hline \multicolumn{3}{|c|}{Notes}

\hline (a) \& M1 using Hooke's law to obtain an equation for e A1 correct answer \&

\hline (b) \& | M1 using NL2 vertically |
| :--- |
| A1 correct equation |
| M1 using Hooke's law to replace T with an expression for x. These 3 marks instead of \ddot{x} |
| A1 fully correct, simplified equation |
| A1 conclusion with all work correct | \& gained with a

\hline (c) \& | M1 using $v=a w$ |
| :--- |
| A1 correct equation |
| A1 correct amplitude | \&

\hline (d) \& | M1 for an equation to find required time |
| :--- |
| A1 correct equation |
| M1 solving their equation must be in radians and must give a positive value A1 correct time decimal equivalent acceptable. | \&

\hline
\end{tabular}

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Mechanics 3
(WME03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA039521
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.

' A ' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

6. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $g=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
-

Marks must be
entered in the same order as they appear on the mark scheme.

- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
$M(A)$ Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)

HL Hooke's Law

SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks
1(a)	$\begin{aligned} & \omega=\frac{2 \pi}{\frac{\pi}{4}}=8 \\ & \ddot{x}=-\omega^{2} x \\ & 20=\left\|-8^{2} a\right\|=64 a \\ & \left.a=\frac{20}{64}=\frac{5}{16} \quad(\mathrm{~m}) \text { oe } \quad \text { (Accept } 0.31,0.313,0.3125\right) \end{aligned}$	M1 M1 A1
(b)	$v_{\text {max }}=a \omega=2.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1ft (1)
(c)	Dist from $A=1.5-\frac{20}{16}=0.25$ $x=a \cos \omega t=\frac{5}{16} \cos 8 t$	B1
	$\begin{aligned} & \frac{1}{16}=\frac{5}{16} \cos 8 t \\ & t=\frac{1}{8} \cos ^{-1} 0.2 \end{aligned}$	M1 A1
	Total time $=\frac{\pi}{4}+\frac{1}{8} \cos ^{-1} 0.2=0.95657 \ldots \quad 0.96$ or better	A1ft (4) [8]
	Notes for Question 1	
	(a)M1 for attempting to obtain ω no need to simplify M1 using max mag of $\ddot{x}=\left\|-\omega^{2} x\right\|$ with max mag accel $=20$ and their ω A1 $\quad a=\frac{5}{16} \mathrm{~m}$ oe fraction or 0.3125 m (b)B1ft $\quad v_{\max }=a \omega=2.5$ follow through their values for ω and a (c)B1 finding the distance from A when P has travelled $1.5 \mathrm{~m}=0.25 \mathrm{~m}$ OR the distance from the centre $=\frac{1}{16}$ M1 using $x=a \cos \omega t$ with $x=\frac{1}{16}$ (their value), their ω and their a OR for using $x=a \sin \omega t$ with $x=\frac{1}{16}$ (their value), their ω and their a A1 for $t=\frac{1}{8} \cos ^{-1} 0.2$ OR $t=\frac{1}{8} \sin ^{-1} 0.2$ A1ft for $\frac{\pi}{4}+\frac{1}{8} \cos ^{-1} 0.2=0.95657 \ldots \quad 0.96$ or better ft their time or equivalent using sine	

Question Number	Scheme	Marks
2.	$\begin{aligned} & \text { Mass/area of half of lami } \\ & \int_{0}^{a \sqrt{3}} y x \mathrm{~d} x=\int_{0}^{a \sqrt{3}} \frac{x^{2}}{\sqrt{3}} \mathrm{~d} x \\ & =\left[\frac{x^{3}}{3 \sqrt{3}}\right]_{0}^{a \sqrt{3}} \\ & =a^{3} \end{aligned}$ For the half lamina in the first quadrant $\bar{x}=\frac{\int y x \mathrm{~d} x}{\text { area }}=a^{3} \div \frac{a^{2} \sqrt{3}}{2}$ By symmetry, c of m of complete triangle is $\frac{2 a}{\sqrt{3}}$ oe eg 1.15a, $1.2 a$ Alternative Work with the whole lamina by multiplying by 2 in lines $1-4$. No mention of symmetry needed for final answer.	B1 M1 A1 A1 M1 A1 [6]
	Notes for Question 2	
	B1 for the mass or area of half of the lamina M1 for attempting to integrate $\int_{0}^{a \sqrt{3}} \frac{x^{2}}{\sqrt{3}} \mathrm{~d} x$ limits not needed here A1 for $\left[\frac{x^{3}}{3 \sqrt{3}}\right]_{0}^{a \sqrt{3}}$ limits must be shown and correct but can be implied if result of sub is correct. A1 for sub limits to get a^{3} M1 for using $\bar{x}=\frac{\int y x \mathrm{~d} x}{\text { area }}$ with their previous answers A1cso for $\frac{2 a}{\sqrt{3}}$ oe eg 1.15a, 1.2a "Symmetry" or " 2 x " must be seen for all marks to be awarded. If missing, deduct final A mark. If no a in the integrals deduct final A mark unless similar triangles are mentioned. Use of a solid scores $0 / 6$	

Question Number	Scheme	Marks
3	$\begin{aligned} & T_{a} \cos 30+T_{b} \cos 60=3 g \\ & T_{a} \sin 30+T_{b} \sin 60=3 r \omega^{2} \\ & =3 \times 0.4 \cos 30 \omega^{2} \end{aligned}$ Solve: $\begin{aligned} & T_{a} \frac{\sqrt{3}}{2}+\frac{1}{2} T_{b}=3 \mathrm{~g} \\ & \frac{1}{2} T_{a}+T_{b} \frac{\sqrt{3}}{2}=3 \times 0.4 \times \frac{\sqrt{3}}{2} \times 36 \end{aligned}$ $T_{b}=1.2 \times 36 \times \frac{3}{2}-3 g$ $T_{b}=35.4(\mathrm{~N})$ $T_{a}=13.5$ (N) must be 2 or 3 sf	M1A1A1 M1A1 A1 DM1A1 A1
	Notes for Question 3	
	M1 for resolving vertically. Two tensions (resolved) and a weight must be seen. A1 for two correct terms A1 for all terms (inc signs) correct M1 for NL2 horizontally. Two tensions (resolved) and mass x acceleration needed. The acceleration can be in either form A1 for the two tensions, correctly resolved and added A1 for $3 \times 0.4 \cos 30 \omega^{2}$ M1 dep for solving the equations to obtain either tension. Dependent on both previous M marks A1 for either tension correct A1 for the second tension correct. Both tensions must be given to 2 or 3 sf to gain the marks. (Penalise once for more than 3 sf)	

Question Number	Scheme	Marks
4(a)	$0.4 \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{4}{(t+5)^{2}}$	B1
	$v=-\frac{10}{(t+5)}+c$	M1A1
	$t=0, v=4 \Rightarrow 4=-\frac{10}{5}+c, c=6$	DM1
	$\begin{equation*} v=6-\frac{10}{(t+5)} \quad t \geqslant 0 \frac{10}{t+5} \geqslant 0 \Rightarrow v \leqslant 6 \tag{5} \end{equation*}$	A1
(b)	$s=\int_{2}^{7}\left(6-\frac{10}{(t+5)}\right) \mathrm{d} t$	
	$=[6 t-10 \ln (t+5)]_{2}^{7}$	M1A1ft
	$=42-10 \ln 12-(12-10 \ln 7)$	M1
	$=30+10 \ln \left(\frac{7}{12}\right) \quad$ oe eg $24.6100 \ldots .25$ or better	A1
(c)	$\mathrm{KE}=\frac{1}{2} \times 0.4 \times\left(6-\frac{10}{12}\right)^{2}-\frac{1}{2} \times 0.4 \times\left(6-\frac{10}{7}\right)^{2}$	M1A1ft
	$=1.1592 \ldots \mathrm{~J}$ Accept 1.2 or better	A1 (3) [12]
	Notes for Question 4	
	(a)B1 for a correct equation of motion with acceleration $=\frac{\mathrm{d} v}{\mathrm{~d} t}$. Can be awarded by implication if work correct at next stage M1 for attempting the integration wrt t to obtain an expression for v A1 for correct result, constant not needed M1dep for using $t=0, v=4$ to obtain a value for c Dependent on the previous M mark A1cso for a correct concluding statement. Can have \geqslant or $>$ (b) M1 for attempting the integration of their expression for v Limits need not be seen for this mark A1ft for correct integration M1 for substituting the limits 2 and 7 A1cao a correct result, exact or decimal (min 2 sf) (c)M1 for attempting the difference of KE between the points A and B (either way round). Velocities to be calculated using their expression for v. Award for a gain or a loss. A1ft for KE at $B-K E$ at A, with their expression for v. Need not be simplified, may be reversed.	

Question Number	Scheme	Marks
5(a)	Energy A to $B \quad \frac{1}{2} \times 2 m v^{2}-\frac{1}{2} \times 2 m u^{2}=2 m g a\left(1-\cos 60^{\circ}\right)$ $v^{2}=u^{2}+g a$ C of M: $2 m v=3 m V$ $V=\frac{2}{3} \sqrt{u^{2}+a g} *$	M1A1 A1 B1 DM1A1 (6)
(b)	NL2 at bottom: $\quad 3 m \frac{V^{2}}{a}=T-3 m g$ $T=3 m\left(\frac{V^{2}}{a}+g\right)=m\left(\frac{4 u^{2}}{3 a}+\frac{13 g}{3}\right)$ (N) oe	M1A1 A1
(c)	Energy from B to top: $\quad \frac{1}{2} \times 3 m \times \frac{4}{9}\left(u^{2}+a g\right)-\frac{1}{2} \times 3 m X^{2}=3 m g \times 2 a$ At top $\quad T+3 m g=3 m \frac{X^{2}}{a}$	M1A1 M1A1
	$\begin{aligned} & T \geqslant 0 \quad \Rightarrow X^{2} \geqslant a g \\ & \frac{4}{18}\left(u^{2}+a g\right)-2 a g \geqslant \frac{a g}{2} \\ & u^{2} \geqslant \frac{41 a g}{4} \quad * \end{aligned}$	DM1 A1 (6) [15]

	Notes for Question 5	
	(a) M1 for an energy equation from A to B. Two KE terms and 2 PE terms (or a loss of PE) needed. A1 for correct KE terms (difference either way round) A1 for a correct loss of PE and all signs correct throughout the equation mass can be m or $2 m$ for these two A marks, provided consistent B1 for a correct conservation of momentum equation M1dep for using the two equations to obtain the speed of the combined particle. Dep on the first M mark and using the C of M equation even if B 0 has been given for it. A1cso $\text { for } V=\frac{2}{3} \sqrt{u^{2}+a g} \quad *$ (b) M1 for using NL2 at the bottom, tension, weight and mass x accel terms required. Accel can be in either form. A1 for a fully correct equation, no need to substitute for the speed. A1 for substituting the speed (as given in (a)) to obtain a correct expression for the tension in terms of a, g, m and u. Must be simplified. Any equivalent expression scores A1 eg $\frac{m}{3 a}\left(12 u^{2}+13 a g\right)$ (c)M1 An energy equation from the bottom to the top. Must have a difference of KE terms and a gain of PE. A1 for a fully correct equation M1 for NL2 along the radius at the top. Must have a tension, weight and mass x acceleration (in either form). A1 for a fully correct equation acceleration in either form. M1dep for using $T \geqslant 0$ at the top to obtain an inequality for the speed at the top and completing to an inequality for u^{2}. Dependent on both previous M marks in (c). OR: Eliminate X^{2} between the two equations and then use the inequality $T \geqslant 0$ Alcso \quad for $u^{2} \geqslant \frac{41 a g}{4}$ *	

Question Number	Scheme	Marks
6(a)	$\begin{aligned} & T=\frac{9 m g p a}{6 a}=m g \\ & p=\frac{2}{3}^{*} \end{aligned}$	M1 A1 (2)
(b)	$\begin{aligned} & T=\frac{9 m g\left(\frac{2}{3} a+x\right)}{6 a} \\ & m g-\frac{9 m g\left(\frac{2}{3} a+x\right)}{6 a}=m \ddot{x} \\ & -\frac{9 g x}{6 a}=-\frac{3 g x}{2 a}=\ddot{x} \end{aligned}$ Of form $\ddot{x}=-\omega^{2} x \quad \therefore$ SHM	M1A1 DM1 A1 (4)
(c)	$\text { Period }=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{3 g}{2 a}}},=2 \pi \sqrt{\frac{2 a}{3 g}}$	M1,A1ft (2)
(d)	The string never becomes slack or the SHM is complete	B1 (1)
(e)	$\begin{aligned} & \text { Loss of } E P E=\frac{9 m g \times(2 a)^{2}}{2 \times 6 a}=3 m g a \\ & m g h=3 m g a, \quad h=3 a \\ & A E=A D-h=8 a-3 a=5 a \end{aligned}$	B1 $\mathrm{M} 1, \mathrm{~A} 1$ A1ft (4) [13]
	Notes for Question 6	
	(a)M1 for using Hooke's Law resolving vertically. A1cso $\text { for } p=\frac{2}{3} *$ (b)M1 for an equation of motion vertically. Must have a tension, a weight and a mass x acceleration. Allow with a for acceleration. Must be dimensionally correct, but allow for misuse of brackets. A1 for a correct equation, can still have a M1dep for rearranging to the form $\ddot{x}=-\omega^{2} x \quad$ Acceleration a scores M0 A1 for a correct equation and a conclusion eg \therefore SHM Accept "shown" (c)M1 for using period $=\frac{2 \pi}{\omega}$ with their ω to obtain the period. A1ft for $2 \pi \sqrt{\frac{2 a}{3 g}}$ (d)B1 for any statement equivalent to those shown (e)B1 for the EPE lost or initial EPE. Need not be simplified. M1 for an energy equation equating their EPE to the PE gained A1 for a correct vertical distance risen A1ft for $A E=8 a$-their distance risen	

edexcel

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Mechanics 3 (6679_01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA039497
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s .
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.

' A ' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)
A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- \quad The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

6. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- dM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks
1.	$\begin{aligned} & R \sin \theta=m \times 4 r \sin \theta \times \frac{3 g}{8 r} \\ & R=\frac{3}{2} m g \\ & R \cos \theta=m g \\ & \frac{3}{2} m g \cos \theta=m g \\ & \cos \theta=\frac{2}{3} \\ & O C=4 r \cos \theta=4 r \times \frac{2}{3}=\frac{8}{3} r \mathrm{oe} \end{aligned}$	M1A1A1 M1A1 M1 (dep) A1 M1A1 [9]
$\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { ALT: } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 dep } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 cso } \end{array}$	Notes for Question 1 for NL2 towards C - Accept use of $v=\sqrt{\frac{3 g}{8 r}}$ and $a=\frac{v^{2}}{r}$ as a mis-read for LHS fully correct for RHS fully correct Work in the direction of R and obtain the same equation with $\sin \theta$ "cancelled". Give M1A1A1 if fully correct, M0 otherwise. for resolving vertically for the equation fully correct for eliminating R between the two equations Dependent on both above M marks for $\cos \theta=\frac{2}{3}$ for attempting to use trig or Pythagoras to obtain $O C$ for $O C=\frac{8}{3} r$	

Alternative for Question 1

M1A1A1	$R \sin \theta=m \times a \times \frac{3 g}{8 r}$
M1 A1	$R \cos \theta=m g$
M1 A1	$\tan \theta=\frac{3 a}{8 r}$
M1	$\frac{a}{O C}=\frac{3 a}{8 r}$
A1	$O C=\frac{8 r}{3}$

Question Number	Scheme	Marks
(a)	(At surface) $\frac{k}{R^{2}}=m g \Rightarrow k=m g R^{2}$	M1A1 (2)
(b)	$m \ddot{x}=-\frac{m g R^{2}}{x^{2}}$	
	$v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{g R^{2}}{x^{2}}$	M1
	$\int v \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=-g R^{2} \int \frac{1}{x^{2}} \mathrm{~d} x \quad \text { or } \int \frac{\mathrm{d}\left(\frac{1}{2} v^{2}\right)}{\mathrm{d} x} \mathrm{~d} x$	
	$\frac{1}{2} v^{2}=\frac{g R^{2}}{x}(+c)$	DM1A1
	$x=\frac{5 R}{4}, v=\sqrt{\frac{g R}{2}} \Rightarrow c=-\frac{11 g R}{20}$	DM1A1
	$v=00=\frac{g R^{2}}{x}-\frac{11 g R}{20}$	DM1
	$x=\frac{20 R}{11}$	A1 (7)
		[9]

	Notes for Question 2
(a)	for $\frac{k}{R^{2}}=m g$. If not made clear that this applies at the surface of the Earth award M0 or
M1	$\frac{k}{x^{2}}=m g \text { and } x=R .$
A1 cso	for $k=m g R^{2} *$
(b)	
M1	for using accel $=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ oe in NL2 with or w/o $m \quad$ Minus sign not required.
M1 dep	for attempting to integrate both sides - minus not needed
A1	for fully correct integration, with or w/o the constant. Must have included the minus sign from the start.
M1 dep	for using $x=\frac{5 R}{4}, v=\sqrt{\frac{g R}{2}}$ to obtain a value for the constant. Use of $x=\frac{R}{4}$ scores M0 Depends on both previous M marks
A1	$\text { for } c=-\frac{11 g R}{20}$
M1 dep	for setting $v=0$ and solving for x Depends on 1st and 2nd M marks, but not 3rd $20 R$
A1 cso	for $x=\frac{20 R}{11}$
ALT:	By definite integration First 3 marks as above, then
DM1	Using limits $x=\frac{5 R}{4}, v=\sqrt{\frac{g R}{2}}$
DM1	Using limit $v=0$
A1	Correct substitution
A1 cso	for $x=\frac{20 R}{11}$
	NB: The penultimate A mark has changed position, but must be entered on e-pen in its original position.

Alternative for Question 2

Qu 2 (a):

Using $F=\frac{G M_{1} M_{2}}{x^{2}}$ with $x=R$ and one mass as mass of Earth:
$m g=\frac{G m M_{E}}{R^{2}}$
$G M_{E}=g R^{2} \Rightarrow F=\frac{m g R^{2}}{x^{2}} \Rightarrow F=\frac{k}{x^{2}}$ with $k=m g R^{2} *$
M1 Complete method A1 Correct answer
Qu 2 (b):
By conservation of energy:
Work done against gravity $=\int_{\frac{5 r}{4}}^{z} \frac{m g R^{2}}{x^{2}} \mathrm{~d} x=\int_{\frac{5 r}{4}}^{z} m g R^{2} x^{-2} \mathrm{~d} x$
M1
$=\frac{4 m g R}{5}-\frac{m g R^{2}}{Z}$
DM1 (integration)A1 (correct)
Work-energy equation: $\frac{m g R}{4}=\frac{4 m g R}{5}-\frac{m g R^{2}}{Z}$
DM1A1
$z=\frac{20 R}{11}$

Question Number	Scheme	Marks
(a)	$\frac{3 m g x^{2}}{2 l}=2 m g x \sin \alpha$	M1A1 B1(A1 on e- pen)
	$3 x^{2}=4 x l \times \frac{3}{5}$ $5 x^{2}=4 x l$	
	$x=\frac{4}{5} l$	DM1A1 (5)
(b)	$R=2 m g \cos \alpha\left(=\frac{8}{5} m g\right)$	B1
	$\frac{3 m g}{2 l} \times \frac{4}{25} l^{2}=2 m g \times \frac{2}{5} l \times \frac{3}{5}-, \quad \mu \frac{8}{5} m g \times \frac{2}{5} l$ $6=12-16 \mu$	M1A1ft, B1ft (A1 on epen)
	$16 \mu=6 \quad \mu=\frac{3}{8}$	$\begin{array}{ll} \text { DM1A1 } & \text { (6) } \\ {[\mathbf{1 1]}]} & \end{array}$

Alternative for Question 4

Qu 4: Using NL2:
(a)
$2 m a=2 m g \sin \alpha-\frac{3 m g x}{l}$
$2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{6 g}{5}-\frac{3 g x}{l}$
$v^{2}=\frac{6 g x}{5}-\frac{3 g x^{2}}{2 l},+c$
$v=03 g x\left(\frac{2}{5}-\frac{x}{2 l}\right)=0$
$x=\frac{4 l}{5}$
(b)
$R=2 m g \cos \alpha$
$2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{6 g}{5}-\frac{3 g x}{l}-\mu \frac{8 g}{5}$
$v^{2}=\frac{6 g x}{5}-\frac{3 g x^{2}}{2 l}-\mu \frac{8 g x}{5},+c$
$v=0 x=\frac{2 l}{5} \quad \mu \frac{8}{5}=\frac{6}{5}-\frac{3}{2 l} \times \frac{2 l}{5}$ $\mu=\frac{3}{8}$

M1 (equation and attempt integration)
A1, A1 (show $c=0$)
M1 (set $v=0$ and solve)

A1

B1

M1 (eqn and int)A1, A1 (show $c=0$)

M1 (set $v=0$ and solve)

A1

If SHM methods are used, SHM must be proved first.

Question Number	Scheme	Marks
5.		
(a)	$\mathrm{Vol}=\pi \int_{0}^{\frac{\pi}{2}} y^{2} \mathrm{~d} x=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \mathrm{~d} x$	M1
	$=\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(\cos 2 x+1) \mathrm{d} x$	M1
	$=\frac{\pi}{2}\left[\frac{1}{2} \sin 2 x+x\right]_{0}^{\frac{\pi}{2}}=\frac{\pi^{2}}{4}$	DM1A1 (4)
(b)	$\pi \int_{0}^{\frac{\pi}{2}} y^{2} x \mathrm{~d} x=\pi \int_{0}^{\frac{\pi}{2}} x \cos ^{2} x \mathrm{~d} x$	M1
	$=\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{2} x(\cos 2 x+1) \mathrm{d} x$	
	$=\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} x \cos 2 x \mathrm{~d} x+\frac{\pi}{2}\left[\frac{x^{2}}{2}\right]_{0}^{\frac{\pi}{2}}$	
	$\frac{\pi}{2}\left[x \times \frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{2}}-\frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin 2 x \mathrm{~d} x,+\frac{\pi^{3}}{16}$	M1,B1
	$=0+\frac{\pi}{2}\left[\frac{1}{4} \cos 2 x\right]_{0}^{\frac{\pi}{2}}+\frac{\pi^{3}}{16}$	DM1
	$=\frac{\pi}{8}[-1-1]+\frac{\pi^{3}}{16}=\frac{\pi^{3}}{16}-\frac{\pi}{4}$	A1ft
	$\bar{x}=\frac{\pi^{3}-4 \pi}{16} \div \frac{\pi^{2}}{4}=\frac{\pi^{2}-4}{4 \pi} \quad \text { or } \quad 0.467088 \ldots$	M1A1 (7) [11]

	Notes for Question 5
(a)	
M1	for using $\mathrm{Vol}=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} x \mathrm{~d} x$. If π is missing here it must be included later to earn this mark.
	Limits not needed
M1	for using the double angle formula (correct) to prepare for integration. Formula must be correct. π and limits not needed for this mark.
M1 dep	for attempting to integrate and substitute the correct limits (only sub of non-zero limit needed be to seen) dependent on both M marks.
A1 cso	for $\frac{\pi^{2}}{4} *$ (check integration is correct, answer can be obtained by luck due to the limits)
(b)	NB: The first 5 marks can be earned with or without π
M1	for using $\pi \int_{0}^{\frac{\pi}{2}} x \cos ^{2} x \mathrm{~d} x \quad \pi$ not needed; limits not needed.
M1	for using the double angle formula (correct) and attempting the first stage of integration by parts
B1	for $\frac{\pi^{3}}{16}$ or $\frac{\pi^{2}}{16}$ if π not included. NB integration by parts not needed for this mark
M1 dep	for completing the integration by parts, limits not needed yet
A1 ft	$\text { for }=\frac{\pi}{8}[-1-1]+\frac{\pi^{3}}{16}=\frac{\pi^{3}}{16}-\frac{\pi}{4} \quad \text { or }=\frac{1}{8}[-1-1]+\frac{\pi^{2}}{16}=\frac{\pi^{2}}{16}-\frac{1}{4} \mathrm{ft} \text { on } \frac{\pi^{3}}{16}$
	for using $\bar{x}=\frac{\int \pi y^{2} x \mathrm{~d} x}{\int \pi y^{2} \mathrm{~d} x}$ The numerator integral need not be correct.
M1	π should be seen in both or neither integral
	for $\bar{X}=\frac{\pi^{2}-4}{4 \pi} \quad$ oe eg $\frac{\pi}{4}-\frac{1}{\pi}$ or $0.467088 \ldots$
A1 cso	Accept 0.47 or better but no fractions within fractions
	(a) has a given answer, so the cso applies to the solution of (b) only.

Question Number	Scheme	Marks
6.		
(a)	$\frac{1}{2} m U^{2}-\frac{1}{2} m v^{2}=2 m g a$	M1A1
	$\begin{aligned} & T+m g=m \frac{v^{2}}{a} \\ & T=\frac{\left(m U^{2}-4 m g a\right)}{a}-m g \end{aligned}$	M1A1 DM1
	$T=\frac{m U^{2}-5 m g a}{a}$	A1
	$T \geqslant 0 \Rightarrow U^{2} \geqslant 5 g a$	DM1
	$U \geqslant \sqrt{5 a g}$	A1 (8)
(b)	At top: $\quad T=\frac{9 m g a-5 m g a}{a}=4 m g$	M1 (either tension)A1
	At bottom: $\quad T^{\prime}-m g=\frac{m U^{2}}{a}$	A1
	$k T=m g+\frac{9 m a g}{a}=10 \mathrm{mg}$	DM1
	$k=\frac{10 m g}{4 m g}=\frac{5}{2}$	(5) [13]

	Notes for Question 6
(a)	for an energy equation, from the bottom to the top. A difference of KE terms and a PE term needed.
M1	From bottom to a general point gets M0 until a value for θ at the top is used. $v^{2}=u^{2}+2 a s$ scores M0
A1	for all terms correct (inc signs)
M1	for NL2 along the radius at the top. Two forces and mass x acceleration needed. Accel can be in either form here. But see NB at end of (a)
A1	for a fully correct equation. Acceleration should be $\frac{v^{2}}{a}$ now.
M1 dep	for eliminating v (vel at top) between the two equations. Dependent on both previous M marks. If v is set $=0$, award M0
A1	for a correct expression for T
M1 dep	for using $T \geqslant 0$ to obtain an inequality for U^{2} or U. Allow with > Dependent on all previous M marks.
A1 cso	for $U \geqslant \sqrt{5 a g} *$ Watch square root! Give A0 if $>$ seen on previous line.
	NB: The second and fourth M marks (and their As if earned) can be given together if $m g \leq m \frac{v^{2}}{a}$ is seen
(b)	
M1	for obtaining an expression for the tension at the top or at the bottom, no need to substitute for U yet.
A1	Substitute for U and obtain one correct tension (4 mg at top or 10 mg at bottom)
A1	for the other tension correct
M1 dep	for using tension at bottom $=k x$ tension at the top and solving for k
A1 cso	for $k=\frac{5}{2} \quad$ oe

Question Number	Scheme	Marks
7. (a)	$T=\frac{\lambda x}{l}=\frac{\lambda \times 0.5 l}{l}$	M1A1
	$\lambda=2 \mathrm{mg}$ *	A1 (3)
(b)	$m g-T=m \ddot{\chi}$	M1
	$m g-\frac{2 m g(0.5 l+x)}{l}=m \ddot{x}$	DM1A1A1
	$\ddot{x}=-\frac{2 g x}{l}$	A1
	$\therefore \mathrm{SHM}$	A1cso(B1 on epen) (6)
(c)	$a=0.3 l$	
	$\|\ddot{x}\|_{\max }=2 g \times \frac{0.3 l}{l}=0.6 g \quad\left(=5.88 \text { or } 5.9 \mathrm{~m} \mathrm{~s}^{-2}\right)$	M1A1ft (2)
(d)	$x=a \cos \omega t=0.3 l \cos \left(\sqrt{\frac{2 g}{l}}\right) t$	
	Time C to $D: \quad 0.15=0.3 \cos \left(\sqrt{\frac{2 g}{l}}\right) t$	M1
	$t=\sqrt{\frac{l}{2 g}} \cos ^{-1} 0.5$	
	Time C to $E: \quad t^{\prime}=$ half period $=\pi \sqrt{\frac{l}{2 g}}$	B1
	Time D to $E:=\left(\pi-\cos ^{-1} 0.5\right) \sqrt{\frac{l}{2 g}}=\frac{2 \pi}{3} \sqrt{\frac{l}{2 g}}$	M1A1 (4)
		[15]

	Notes for Question 7
(a)	
M1	for using Hooke's Law
A1	for a correct equation
A1	for solving to get $\lambda=2 \mathrm{mg}$ *
(b)	
M1	for using NL2. Weight and tension must be seen. Acceleration can be a here, but must be an equation at a general position
M1 dep	for using Hooke's Law for the tension. Acceleration can be a
A1 A1	for a fully correct equation inc acceleration as $\ddot{\chi}$ (-1 ee)
	for simplifying to $\ddot{\chi}=-\underline{2 g x}$ oe
A1	for simplifying to $x=-\frac{2}{l}$
A1 cso	for the conclusion
(c)	
M1	for using $\|\ddot{x}\|_{\max }=\omega^{2} a$ with their ω and $a=0.31 . \quad \omega$ must be dimensionally correct
A1 ft	for obtaining the max magnitude of the accel, accept 0.6 g , 5.9 or 5.88 only. ft their ω
(d)	
M1	for using $x=a \cos \omega t$ with $x= \pm 0.15 l, a=0.3 l$ and their ω to obtain an expression for the time from C to D
B1	for time C to $E=$ half period $=\pi \sqrt{\frac{l}{2 g}}$
M1	For any correct method for obtaining the time from D to E
A1 cao	$\text { for } \frac{2 \pi}{3} \sqrt{\frac{l}{2 g}} \text { oe inc } 0.473 \sqrt{l} \quad 0.47 \sqrt{l}$
ALT for (d): (i)	
M1	Use $x=a \sin \omega t$ with $x=0.15 l, a=0.3 l$ and their ω to obtain an expression for the time from B to D
M1, A1	as above
(ii)	Using $x=a \cos \omega t$ with $x= \pm 0.15 l, a=0.3 l$ and their ω This gives the required time in one step. Award M2 A1 for correct substitution A1 correct answer However do not isw if further work shown. Mark according to mark scheme method and give $\boldsymbol{m a x}$ M1B1M0A0.

Alternative for Question 7

Qu 7 (d)
By reference circle:

Centre of circle is O
Angle $C O D=\theta \quad$ Angle $E O D=\alpha$
$\cos \theta=\frac{0.15 l}{0.3 l} \quad \theta=\frac{\pi}{3}$
M1
$\alpha=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
B1
$\omega=\sqrt{\frac{2 g}{l}}$
time $=\frac{\alpha}{\omega}=\frac{2 \pi / 3}{\sqrt{\frac{2 g}{l}}}=\frac{2 \pi}{3} \sqrt{\frac{l}{2 g}}$
M1A1
-

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Mechanics 3
(WME03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040633
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity this M mark is often dependent on the two previous M marks having been earned.
' A ' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

6. I gnore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

J an 2015

WME03/01 M3 (IAL)
Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} & 3 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{9}{2}(26-x) \\ & \frac{\mathrm{d}\left(\frac{1}{2} v^{2}\right)}{\mathrm{d} x}=\frac{3}{2}(26-x) \\ & \frac{1}{2} v^{2}=\frac{3}{2}\left(26 x-\frac{1}{2} x^{2}\right) \quad(+c) \end{aligned}$ Max speed when accel is zero ie when $x=26$ $\begin{aligned} & \frac{1}{2} \times 32^{2}=\frac{3}{2} \times \frac{1}{2} \times 26^{2}+c \quad \Rightarrow c=5 \\ & v^{2}=3\left(26 x-\frac{1}{2} x^{2}\right)+10 \end{aligned}$	M1 M1A1 B1 A1 A1 (6)
	M1 NL2 with accel in a correct form- can be implied by subsequent working M1 integrate the equation wrt x A1 correct result after integrating - constant not needed B1 deduce max speed occurs when $x=26$ A1 a correct value for the constant A1 a correct expression for v^{2} - can be in any form ALT for last 3 marks: M1 (B1 on e-pen) Complete square and equate constant part to 32^{2} or use \max of quadratic $=\frac{4 a c-b^{2}}{4 a}$ A1 correct c A1 correct expression for v^{2}	

Question Number	Scheme	Marks
2	$\begin{aligned} & \text { Area }=\int_{1}^{3} y \mathrm{~d} x=\int_{1}^{3} \frac{3}{x^{2}} \mathrm{~d} x \\ & =\left[-3 x^{-1}\right]_{1}^{3}=-1-(-3)=2 \end{aligned}$	B1
(i)	$\int_{1}^{3} x y \mathrm{~d} x=\int_{1}^{3} x \times \frac{3}{x^{2}} \mathrm{~d} x=\int_{1}^{3} \frac{3}{x} \mathrm{~d} x$	
	$[3 \ln x]_{1}^{3}(=3 \ln 3)$	M1A1
	$\bar{x}=\frac{3 \ln 3}{2} \quad(=1.647 \ldots .)$	M1A1
(ii)	$\int_{1}^{3} \frac{1}{2} y^{2} \mathrm{~d} x=\int_{1}^{3} \frac{1}{2} \times \frac{9}{x^{4}} \mathrm{~d} x$	
	$\frac{9}{2}\left[-\frac{x^{-3}}{3}\right]_{1}^{3}=\frac{9}{2}\left[-\frac{1}{81}+\frac{1}{3}\right]=1 \frac{4}{9}$	M1A1
	$\bar{y}=\frac{1 \frac{4}{9}}{2}=\frac{13}{18} \quad(=0.722 \ldots . .)$	DM1A1 (9)
	B1 for a correct area of R (may be embedded in the working) M1 attempting the integral $\int_{1}^{3} x y \mathrm{~d} x$ (integration to be seen) A1 correct integration and limits (substitution not needed) M1 divide by their area - denominator must be an area A1 correct value for \bar{X} - can be exact or decimal 1.6 or better M1 attempting the integral $\int_{1}^{3} \frac{1}{2} y^{2} \mathrm{~d} x$ or $\int_{1}^{3} y^{2} \mathrm{~d} x$ (integration to be seen) A1 correct integration (of their integral) and limits shown DM1 divide by their area must have used $\int \frac{1}{2} y^{2} \mathrm{~d} x$ A1 correct value for \bar{y} - can be exact or decimal 0.72 or better	

Question Number	Scheme	Marks
6 (a)	$\frac{1}{2} m v^{2}-\frac{1}{2} m\left(\frac{a g}{5}\right)=m g a(1-\cos \theta)$	M1A1A1
	$v^{2}=2 a g+\frac{a g}{5}-2 a g \cos \theta=\frac{a g}{5}(11-10 \cos \theta) *$	A1 (4)
(b)	$m g \cos \alpha(-R)=m \frac{v^{2}}{a}$	M1A1
	$g \cos \alpha=\frac{g}{5}(11-10 \cos \alpha) \quad$ or sub $\cos \alpha=\frac{v^{2}}{a g}$ in energy equation	M1 A1
	$\cos \alpha=\frac{11}{15}$	
	P leaves the sphere with speed $\sqrt{\frac{a g}{5}\left(11-\frac{22}{3}\right)}=\sqrt{\frac{11 a g}{15}}$	DM1A1 (6)
(c)	$\text { Horiz comp }=\sqrt{\frac{11 a g}{15}} \times \cos \alpha=\sqrt{\frac{11 a g}{15}} \times \frac{11}{15}$	M1
	By cons of energy from top: $2 m a g=\frac{1}{2} m V^{2}-\frac{1}{2} m \frac{a g}{5}$	M1
	$V^{2}=\frac{21 a g}{5}$	A1
	$\cos \theta=\sqrt{\frac{11 a g}{15}} \times \frac{11}{15} \times \sqrt{\frac{5}{21 a g}}=\sqrt{\frac{11}{63}} \times \frac{11}{15}=0.30642 \ldots$	M1
	$\theta=72.155 \ldots$ Accept 72° or better	A1 (5)
		[15]
(a)	M1 Energy equation from start to general position - must have 2 KE terms and a loss of PE A1 LHS correct A1 RHS correct A1cso re-arrange to the given result	

Question Number	M1 NL2 along radius, acceleration in either form, R need not be shown, weight must be resolved A1 fully correct equation with or w/o R, accel now $\frac{v^{2}}{a}$ M1 elimination of v^{2} or $\cos \alpha$ A1 correct equation after elimination DM1 substitute their cos α to obtain an expression for $v^{2} \quad$ Dep on both previous M marks A1 correct expression for v	Marks
(c)	M1 obtaining an expression for the horiz comp of speed at P M1 use energy to obtain the speed when particle hits the floor A1 correct speed at floor M1 use horizontal speed and resultant speed to find the angle A1 correct angle 2 sf or more figures $(g$ cancels)	
ALT: By SUVAT:		
M1 Horiz component		
M1 Vert component and complete attempt for speed at the floor		
(including the vertical height)		
A1 correct vert speed at floor		
M1 attempt angle using tan (either way up)		
A1 correct angle 2 sf or more figures $(g$ cancels)		

Question Number	Scheme	Marks
(a)	M1 Hooke's Law used to find T at B A1 correct equation M1 eliminating T by use of resolving along the plane A1cso correct value for λ	
(b)	M1 NL2 along the plane when extension is $\frac{a}{5}+x$ - must have a tension and a component of the weight. Allow with \ddot{x} or f (acceleration). A1A1 deduct one per error. (difference of forces wrong way round is one error only) mass x acceleration (not \ddot{x}) is also an error DM1 simplify to the correct form acceleration must be \ddot{x} now A1cso correct final equation AND conclusion A1 correct period M1 obtaining the max acceleration, amp $\neq a$ A1 correct max acceleration (no ft) M1 using equation for $x-$ sin or cos form and solving for $t-$ must use (cadians and $\omega=\sqrt{\frac{5 g}{2 a}}$ amp $\neq a$ A1 correct value for t from their equation M1 complete to obtain the required time A1 correct total time	
(d)If time from end point to $x=-\frac{a}{10}$ is found mark M1M1A1A1		

edexcel "

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Mechanics 3 (WME03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042169
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.

' A ' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF .
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.

Marks must be entered in the same order as they appear on the mark scheme.

- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

J une 2015

WME03 M3
Mark Scheme

| Question
 Number | Scheme | Marks |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | $\left(30^{\circ}\right.$ or θ for the first 3 lines $)$ | |
| $R \sin 30^{\circ}=m g$ | M1A1 | |
| $R \cos 30^{\circ}=m\left(r \cos 30^{\circ}\right) \omega^{2}$ | M1A1A1 | |
| | $\omega^{2}=\frac{R}{m r}=\frac{g}{r \sin 30}$ | DM1 |
| $\omega=\sqrt{\frac{2 g}{r}}$ | A1 | |
| Time $=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{r}{2 g}}=\pi \sqrt{\frac{2 r}{g}} \quad *$ | A1cso | |
| | | [8] |

M1 Resolving vertically 30° or θ
A1 Correct equation 30° or θ
M1 Attempting an equation of motion along the radius, acceleration in either form 30° or θ
Allow with r for radius
A1 LHS correct 30° or θ
A1 RHS correct, 30° or θ but not r for radius
DM1 Obtaining an expression for ω^{2} or for v^{2} and the length of the path 30° or θ Dependent on both previous M marks
A1 Correct expression for ω Must have the numerical value for the trig function now
A1cso Deducing the GIVEN answer
ALT: Resolve perpendicular to the reaction:
$m g \cos 30=m \times r a d \times \omega^{2} \cos 60$
$=m r \cos 30 \omega^{2} \cos 60$
Obtain ω
Correct time

M2A1(LHS) A1(RHS)
A1
M1A1
A1

(a) M1 Setting $F=m g$ and $x=R$

A1 Deducing the GIVEN answer
(b) M1 Attempting an equation of motion with acceleration in the form $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$. The minus sign may be missing.
DM1 Attempting the integration
A1ft Correct integration, follow through on a missing minus sign from line 1, constant of integration may be missing
M1 Substituting $x=3 R, v=V$ to obtain an equation for c
A1 Correct expression for c
M1 Substituting $x=R$ and their expression for c
A1 Correct expression for v, any equivalent form

(a) M1 Attempting an expression for the acceleration in the form $\frac{\mathrm{d} v}{\mathrm{~d} t}$; minus may be omitted.

DM1 Attempting the integration
A1 Correct integration, constant of integration may be omitted (no ft)
M1 Using the initial conditions to obtain a value for the constant of integration
A1cso Substitute the value of c and obtain the final GIVEN answer
(b) M1 Setting the given expression for v equal to 0

A1 Solving to get $t=12$
M1 Setting $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$ and attempting the integration wrt t At least one term must clearly be Integrated.
A1 Correct integration, constant may be omitted
A1 Substituting $t=0, x=0$ and obtaining the correct value of d. Any equivalent number, inc decimals.
DM1 Substituting their value for t and obtaining a value for the required distance. Dependent on The second M mark.
A1 Correct final answer, any equivalent form.

Question Number	Scheme	Marks
4(a)	Energy to top: $\frac{1}{2} \times 3 m \times u^{2}-\frac{1}{2} \times 3 m v^{2}=3 m g a$	M1A1
	NL2 at top: $\quad T+3 m g=3 m \frac{v^{2}}{a}$	M1A1
	$T=3 m \frac{u^{2}}{a}-6 m g-3 m g$	DM1
	$T \geqslant 0 \Rightarrow \frac{u^{2}}{a} \geqslant 3 g$	M1
	$u^{2} \geqslant 3 a g *$	A1 cso (7)
(b)	Tension at bottom:	
	$\frac{1}{2} \times 3 m \times V^{2}-\frac{1}{2} \times 3 m u^{2}=3 m g a$	M1
	$T_{\max }-3 m g=3 m \frac{V^{2}}{a}$	M1
	$T_{\max }=3 m g+6 m g+3 m \frac{u^{2}}{a}$	A1
	$T_{\min }=3 m \frac{u^{2}}{a}-9 m g$	
	$9 m g+3 m \frac{u^{2}}{a}=3\left(3 m \frac{u^{2}}{a}-9 m g\right)$	DM1
	$u^{2}=6 a g \quad *$	A1 cso (5)
		[12]

(a) M1 Attempting an energy equation, can be to a general point for this mark. Mass can be missing but use of $v^{2}=u^{2}+2 a s$ scores M0
A1 Correct equation from A to the top
M1 Attempting an equation of motion along the radius at the top, acceleration in either form
A1 Correct equation, acceleration in form $\frac{v^{2}}{r}$
DM1 Eliminate v^{2} to obtain an expression for T Dependent on both previous M marks
M1 Use $T \geqslant 0$ at top to obtain an inequality connecting a, g and u
A1cso Re-arrange to obtain the GIVEN answer
(b) M1 Attempting an energy equation to the bottom, maybe from A or from the top

M1 Attempting an equation of motion along the radius at the bottom
A1 Correct expression for the max tension
DM1 Forming an equation connecting their tension at the top with their tension at the bottom. If the 3 is multiplying the wrong tension this mark can still be gained. Dependent on both previous M marks
A1cso Obtaining the GIVEN answer.

Question Number	Scheme	Marks
5 (a)	$\begin{aligned} & T=\frac{20 e}{2}=\frac{15(1.8-e)}{1.2} \\ & 10 e \times 1.2=15(1.8-e) \end{aligned}$	M1A1
	$e=1$	A1
	$A O=3 \mathrm{~m}$ *	A1cso (4)
(b)	$0.5 \ddot{x}=\frac{20(1-x)}{2}-\frac{15(0.8+x)}{1.2}$	M1A1A1
	$\ddot{x}=-45 x \quad \therefore \mathrm{SHM}$	A1cso (4)
(c)	String becomes slack when $x=(-) 0.8$ (allow wo sign due to symmetry) $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$	B1
	$v^{2}=45\left(1-0.8^{2}\right) \quad(=16.2)$	M1A1ft
	$v=4.024 \ldots \mathrm{~m} \mathrm{~s}^{-1}$ (4.0 or better)	A1ft (4)
(d)	$\begin{aligned} & \frac{1}{2} \times \frac{20 y^{2}}{2}-\frac{1}{2} \times \frac{20 \times 1.8^{2}}{2}=\frac{1}{2} \times 0.5 \times 16.2 \quad \mathrm{ft} \text { on } v \\ & 20 y^{2}-64.8=16.2 \end{aligned}$	M1A1A1ft
	$y^{2}=4.05 \quad y=2.012 \ldots$	A1
	Distance $D B=\|5-4.012 \ldots\|=0.988 \ldots \mathrm{~m}$ (accept 0.99 or better)	A1ft (5) [17]
Alt for d:	Prove SHM with only one string Value $\omega$$\quad$ M1A1 (equation)	
	Use $v=a \omega$ to find $a \quad$ A1ft (ft on v)	
	Dist A1ft	

(a) M1 Attempting to obtain and equate the tensions in the two parts of the string.

A1 Correct equation, extension in $A P$ or $B P$ can be used or use $O A$ as the unknown
A1 Obtaining the correct extension in either string (ext in $B P=0.8 \mathrm{~m}$) or another useful distance
A1cso Obtaining the correct GIVEN answer
(b) M1 Forming an equation of motion at a general point. There must be a difference of tensions, both with the variable. May have m instead of 0.5 Accel can be a
A1 A1 Deduct 1 for each error, m or 0.5 allowed, acceleration to be \ddot{x} now
A1cso Correct equation in the required form, with a concluding statement; m or 0.5 allowed
(c) B1 For $x= \pm 0.8$ Need not be shown explicitly

M1 Using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ with their (numerical) ω and their x
A1ft Equation with correct numbers ft their ω
A1ft Correct value for $v 2$ sf or better or exact
(d) M1 Attempting an energy equation with 2 EPE terms and a KE term

A1 2 correct terms may have $(1.8+x)$ instead of y
A1ft Completely correct equation, follow through their v from (c)
A1 Correct value for distance travelled after $P B$ became slack. $\quad x=0.21$
A1ft Complete to the distance $D B$. Follow through their distance travelled after $P B$ became slack.
Alternatives at end of mark scheme

Question Number	Scheme	Marks
6(a)	$\mathrm{Vol}=\pi \int_{0}^{2}\left(x^{2}+3\right)^{2} \mathrm{~d} x$	M1
	$=\pi \int_{0}^{2}\left(x^{4}+6 x^{2}+9\right) \mathrm{d} x$	
	$=\pi\left[\frac{1}{5} x^{5}+2 x^{3}+9 x\right]_{0}^{2}$	DM1A1
	$=\frac{202}{5} \pi \quad \mathrm{~cm}^{3} *$	A1 (4)
(b)	$\pi \int_{0}^{2} x\left(x^{2}+3\right)^{2} \mathrm{~d} x=\pi \int_{0}^{2}\left(x^{5}+6 x^{3}+9 x\right) \mathrm{d} x$	M1
	$=\pi\left[\frac{1}{6} x^{6}+\frac{3}{2} x^{4}+\frac{9}{2} x^{2}\right]_{0}^{2}$	A1
	$=\frac{158}{3} \pi$ (Or by chain rule or substitution)	A1
	C of $\mathrm{m}=\frac{158}{3} \times \frac{5}{202},=1.3036 \ldots=1.30 \mathrm{~cm}$	M1A1 (5)
(c)	Mass ratio $\quad 2 \times \frac{202}{5} \pi \quad \frac{1}{3} \pi \times 7^{2} \times 6 \quad\left(\frac{404}{5}+98\right) \pi$	B1
	$\begin{array}{llll}\text { Dist from } V & 6.7\end{array}$	B1
	$\frac{404}{5} \times 6.7+98 \times 4.5=\left(\frac{404}{5}+98\right) \bar{x}$	M1A1ft
	$\bar{x}=\frac{\frac{404}{5} \times 6.7+98 \times 4.5}{\left(\frac{404}{5}+98\right)}=5.494 \ldots .=5.5 \mathrm{~cm} \text { Accept } 5.49 \text { or better }$	A1 (5)
(d)	$\tan \theta=\frac{6-\bar{x}}{7}=\frac{0.5058 \ldots}{7}$	M1
	$\alpha=\tan ^{-1}\left(\frac{6}{7}\right)-\tan ^{-1}\left(\frac{0.5058 \ldots}{7}\right)=36.468 \ldots{ }^{\circ}=36^{\circ}$ or better	M1A1 (3) [17]

Question Number	Scheme	Marks

(a) M1 Using $\pi \int y^{2} \mathrm{~d} x$ with the equation of the curve, no limits needed

DM1 Integrating their expression for the volume
A1 Correct integration inc limits now
A1 Substituting the limits to obtain the GIVEN answer
(b) M1 Using $(\pi) \int x y^{2} \mathrm{~d} x$ with the equation of the curve, no limits needed, π can be omitted

A1 Correct integration, including limits; no substitution needed for this mark
A1 Correct substitution of limits
M1 Use of $\frac{\pi \int x y^{2} \mathrm{~d} x}{\pi \int y^{2} \mathrm{~d} x}$ with their $\pi \int x y^{2} \mathrm{~d} x . \quad \pi$ must be seen in both numerator and denominator or in neither.
A1cao Correct answer. Must be 1.30
(c) B1 Correct mass ratio

B1 Correct distances, from V or any other point, provided consistent
M1 Attempting a moments equation
A1ft Correct equation, follow through their distances and mass ratio
A1 Correct distance from V
(d) M1 Attempting the tan of an appropriate angle, numbers either way up

M1 Attempting to obtain the required angle
A1 Correct final answer 2sf or more

Alternatives for 5(d)

1 EPE in BP (at release) transferred to EPE in AP (same as MS, except 1 term for first A1)
$2 \quad 0.5 a=-10(1.8+x)$
$v \frac{d v}{d x}=-36-10 x$
$\int v d v=-\int(36+10 x) d x$
$\frac{v^{2}}{2}=-36 x+5 x^{2}+c$ M1A1
$x=0, v=\frac{9 \sqrt{5}}{5}: c=8.1$
A1
Then $v=0$ etc M1A1
advancing learning, changing lives

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Mechanics 3 (6679/ 01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UA042154
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:
'M' marks
These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
The following criteria are usually applied to the equation.
To earn the M mark, the equation
(i) should have the correct number of terms
(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel ' g ' s.
For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity - this M mark is often dependent on the two previous M marks having been earned.
'A' marks
These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.
'B' marks
These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. - follow through - marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

5 For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

6 If a candidate makes more than one attempt at any question:
a. If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
b. If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7 Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- dM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

J une 2015
 6679 M3
 Mark Scheme

Question Number	Scheme	Marks
(a)	$0.5 g=T=\frac{\lambda \times 0.3}{1.2}$	M1A1
$\lambda=2 g=19.6$	A1 (3)	
(b)	$\frac{1}{2} \times \frac{19.6 \times x^{2}}{1.2}-\frac{1}{2} \times \frac{19.6 \times 0.4^{2}}{1.2}=0.5 \times g \times(x+0.4)$ $5 x^{2}-3 x-2=0$ M1A1ftA1 $(5 x+2)(x-1)=0$ or use of diff of 2 squares to obtain and then solve a linear equation $x=1 \quad(x=-0.4$ need not be seen $)$ A1 (4) AC=2.2 m	

(a) M1 Use Hooke's law to obtain the tension and equate to the weight

A1 Correct equation
A1 Solve to get $\lambda=19.6$ Accept 20 or $2 g$
(b) M1 Attempt an energy equation with the difference of 2 EPE terms and a loss of GPE

EPE formula must be of the form $k \frac{\lambda x^{2}}{l}$
A1ft EPE terms correct follow through their λ
A1 GPE term correct, including all signs in the equation correct If x used for EPE and GPE A0 here
A1 Correct length $A C$ If $\lambda=20$ is used, this is p.a. and so scores A0
ALT: Find $B C$ first: $\frac{1}{2} \times \frac{19.6 \times(h-0.4)^{2}}{1.2}-\frac{1}{2} \times \frac{19.6 \times 0.4^{2}}{1.2}=0.5 g h \quad$ M1A1A1
$B C=1.4 \quad A C=2.2$
A1

Methods depending on SHM must prove SHM first, but if correct answer only is given award B1 (M1 on e-PEN)
By integration: Integrating and substituting yields an equation equivalent to the one shown mark from here M1A1A1ft -1 each error ft on λ

Question Number	Scheme	Marks
2 (a)	$\begin{aligned} & \mathrm{Vol}=\pi \int_{0}^{1} 4 \mathrm{e}^{2 \mathrm{x}} \mathrm{~d} x \\ & =\pi\left[2 \mathrm{e}^{2 x}\right]_{0}^{1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { DM1A1 } \end{aligned}$
(b)	$=2 \pi\left(\mathrm{e}^{2}-1\right) *$	A1cso (4)
	$\pi \int_{0}^{1} 4 x \mathrm{e}^{2 x} \mathrm{~d} x$	M1
	$=4 \pi\left\{\left\{x \times \frac{1}{2} \mathrm{e}^{2 x}\right]_{0}^{1}-\int_{0}^{1} \frac{1}{2} \mathrm{e}^{2 x} \mathrm{~d} x\right\}$	DM1
	$=4 \pi\left[\frac{1}{2} \mathrm{e}^{2}-0\right]-4 \pi\left[\frac{1}{4} \mathrm{e}^{2 x}\right]_{0}^{1}$	A1
	$=\pi\left(\mathrm{e}^{2}+1\right)$	A1
	x coord $=\frac{\pi\left(\mathrm{e}^{2}+1\right)}{2 \pi\left(\mathrm{e}^{2}-1\right)}, \quad=\frac{e^{2}+1}{2\left(e^{2}-1\right)}$ oe	M1A1 (6)
		[10]

(a) M1 Using $\pi \int y^{2} \mathrm{~d} x$ with the equation of the curve, no limits needed

DM1 Integrating their expression for the volume
A1 Correct integration inc limits now
A1 Substituting the limits to obtain the GIVEN answer
(b) M1 Using $(\pi) \int x y^{2} \mathrm{~d} x$ with the equation of the curve, no limits needed, π can be omitted

DM1 Attempting to use integration by parts; allow \pm between the two parts. No limits needed
A1 Correct integration, including limits; no substitution needed for this mark
A1 Correct after limits substituted
M1 Use of $\frac{\pi \int x y^{2} \mathrm{~d} x}{\pi \int y^{2} \mathrm{~d} x}$ with their $\pi \int x y^{2} \mathrm{~d} x . \quad \pi$ must be seen in both numerator and denominator or in neither. This mark is not dependent on the previous M marks
A1cao Correct answer.

Question Number	Scheme	Marks
3(a)	$\mathrm{R}(\uparrow) T_{A} \cos 30=m g+T_{B} \cos 30$	M1A1
	NL2 $T_{A} \cos 60+T_{B} \cos 60=m r \omega^{2}$	M1A1
	$=m \times 2 l \cos 60 \omega^{2}$ or $m l \omega^{2}$	A1
	$T_{A}+T_{B}=2 m l \omega^{2}$	
	$T_{A}-T_{B}=\frac{2 m g}{\sqrt{3}}$	
(i)	$T_{A}=\frac{m}{3}\left(31 \omega^{2}+g \sqrt{3}\right)$ oe	DM1A1
(ii)	$T_{B}=\frac{m}{3}\left(31 \omega^{2}-g \sqrt{3}\right)$ oe	A1 (8)
(b)	$T_{B} \geqslant 0 \Rightarrow 31 \omega^{2} \geqslant g \sqrt{3}$	M1
	$\omega^{2} \geqslant \frac{g \sqrt{3}}{3 l} \quad *$	A1cso (2)
		[10]

(a) M1 Resolving vertically

A1 Correct equation
M1 NL2 along radius, acceleration in either form
A1 LHS correct
A1 Correct radius substituted and accel in $r \omega^{2}$. Can be awarded later by implication if work implies correct radius used.
DM1 Solving the two equations to obtain an expression for either tension. Depenent on both previous M marks
A1 Tension in $A P$ correct - simplified to two terms
A1 Tension in BP correct - simplified to two terms
(b) M1 Using their tension in $B P \geqslant 0$ must be \geqslant for this mark

A1cso Obtaining the GIVEN answer. Only error allowed is the expression for the tension in $A P$

(a) M1 Forming an equation of motion with acceleration as $\frac{\mathrm{d} v}{\mathrm{~d} t} 900$ or m

DM1 Attempting the integration
A1 Correct equation. Constant of integration not needed
M1 Substituting either pair of given values
A1 Obtaining correct equations using each pair of values
A1 Obtaining correct values for c and k or use $k=5, \quad c=\frac{70}{k}$
A1 Substituting these values to obtain the GIVEN answer
Misread eg 6300 for 63000: M1DM1A1M1A0A0A0
(b) B1 Must be clear that $v<14$ not just never $=14 \quad \frac{14}{t}>0$ essential
(c) B1 Showing that $t=2$ when $v=7$ Award if seen as upper limit for t in trapezium rule or values $1.25,1.5,1.75$ seen for t
M1 Using the trapezium rule. Must have 4 intervals and values of t shown in the table.
A1 Correct numbers in the trapezium rule statement.
Values of v can be in the form $14-\frac{14}{1.25}$ etc
A1 Correct final answer. It is an estimate, so 2 or 3 sf only.

Question Number	Scheme	Marks
5	Dist of c of m from $O=r \tan 30=\frac{r}{\sqrt{3}}$ $\mathrm{M}(O) \quad-\frac{1}{4} h+\frac{k^{2} h}{4}=(1+k) \frac{r}{\sqrt{3}}$ $\frac{h}{4}\left(k^{2}-1\right)=(k+1) \frac{r}{\sqrt{3}}$ $k=\frac{4 r}{h \sqrt{3}}+1 \quad *$	M1A1 M1A1A1ft A1 [6]
Alt 1	By moments about A $\begin{aligned} & k M g\left(\frac{1}{4} k h \cos 30-r \sin 30\right), M g\left(\frac{1}{4} h \cos 30+r \sin 30\right) \\ & h \cos 30\left(k^{2}-1\right)=4 r \sin 30(k+1) \\ & (k-1)=\frac{4 r}{h} \tan 30 \\ & k=\frac{4 r}{h \sqrt{3}}+1 \quad * \end{aligned}$	M1A1,M1A1 A1ft A1

Question Number	Scheme	Marks
Alt 2	Find \bar{x} first	
	$\mathrm{M}(0) \quad-\frac{1}{4} h+\frac{k^{2} h}{4}=(1+k) \bar{x}$	M1 A1
	$\bar{x}=\frac{h(k-1)}{4} \quad \text { oe }$	A1
	Then suspend: $\frac{\bar{x}}{r}=\tan 30$	M1
	$\frac{h(k-1)}{4 r}=\frac{1}{\sqrt{3}} \quad($ or $\tan 30)$	A1ft
	$k=\frac{4 r}{h \sqrt{3}}+1 *$	A1

M1 Finding the distance of the c of m from O by using the angle given. Must use tan.
A1 Obtaining $\frac{r}{\sqrt{3}}$ (no approx allowed)
M1 Forming a moments equation using the three known distances; mass ratio only needed - do not penalise use of incorrect formulae
A1 LHS correct
A1ft RHS correct for their distance
A1cao Obtaining the GIVEN answer

ALT 1 Taking moments about A

M1 Attempting the LHS - must have two appropriate terms inc the necessary resolution
A1 Correct LHS
M1 Attempting the RHS - must have two appropriate terms inc the necessary resolution
A1 Correct RHS
A1ft Collecting the terms and cancelling $M g$
A1cao Completing to the GIVEN answer

ALT 2 Find \bar{x} first

First M mark on e-PEN: Attempting an equation to find \bar{x} in terms of h and k - mass ratio
as above
A1 First A mark on e-PEN: Correct equation
A1 Second A mark on e-PEN: Correct expression for \bar{X} (as shown or equivalent)
M1 Second M mark on e-PEN: Using $\frac{\bar{x}}{r}=\tan 30 \quad$ (LHS either way up)
A1ft Third A mark on e-PEN: Substitute their \bar{x}; LHS must be the correct way up
A1cao Final A mark on e-PEN: Obtaining the GIVEN answer

(a) M1 Using Hooke's law to find both tensions and equating them. The extension in BP can be used instead of the extension in AP. ALT: Use both extensions and use $e_{a}+e_{b}=2$ later
A1 Correct equation
A1 Correct value found for either extension
A1ft Correct length for $A O$; follow through their extension
(b) M1 Forming an equation of motion at a general point. Difference of 2 tensions, both including. the variable. Use of a instead of \ddot{x} can score M1A1A0A0 max (ie an A error)
A1 A1 A1A1 fully correct; A1A0 one error May have m instead of 0.5 Extensions measured from O A1cso A correct simplified equation. Any equivalent form, including having m instead of 0.5 . There must be a concluding statement.
(c) B1 Correct speed following impulse Can be awarded if seen in (b) or (d)

B1ft Correct value of ω; must be numerical. FT from (b) Can be awarded if seen in (b) or (d)
M1 Using $v_{\max }=a \omega$ (their values). By energy - equation must have all terms
A1ft Correct value of a any equivalent form including decimals. Follow through their ω
(d) M1 Using $y=a \sin \omega t$ with their a and ω If $y=a \cos \omega t$ is used there must be some indication of moving from the time obtained to the required time.
M1 Solving their equation to find a time. Must use radians
A1cso Correct time, min 2 sf. ω and a must have been obtained from correct work.

(a) M1 Attempting an energy equation. 2 KE terms needed and a PE term.

Award if mass missing throughout, but not for use of $v^{2}=u^{2}+2$ as
A1 KE terms correct (and subtracted) Mass not needed if M mark earned
A1 PE correct Again, mass not needed if M mark earned
A1cso Obtaining the GIVEN answer
(b) M1 Attempting an equation of motion along the radius. Accel in either form, $(\pm) R$ may be included.
A1 Correct equation, with or without $(\pm) R$
DM1 Set $R=0$ and substitute for v
A1 $\quad \cos \alpha=3 / 4$ obtained
(c) M1 Attempting the initial vertical component of the speed

A1 Correct vertical component - decimal or exact
M1 Using $s=u t+\frac{1}{2} a t^{2}$ to form a quadratic in t, with their vertical speed and attempt at the vertical distance Must satisfy $0.5<$ distance <1
DM1 Solving their quadratic; formula must be shown (and correct) if answer is incorrect, but allow with $+\sqrt{\ldots .}$ instead of $\pm \sqrt{\ldots}$.
A1 Correct t. Give by implication if stored on a calculator and final answer correct Second solution need not be shown; ignore any shown
M1 Using the horizontal speed and completing to obtain the required distance.
A1 $A C=0.78$ must be 2 sf.

ALT for (c):

M1A1 As main method above
M1 Use the horizontal speed and distance travelled as a projectile to get an expression for t and substitute in $s=u t+\frac{1}{2} a t^{2} \quad$ Vertical distance must be between 0.5 and 1
DM1 Solve their quadratic - see above
A1 Correct (projectile) distance
M1A1 As main method above

7(c) Using energy etc:

M1	Using energy to get the speed at the floor. Can be from the top or the point of leaving the surface
A1	Correct speed at floor
M1	Using the horizontal component of the speed and Pythagoras to obtain the vertical component at the floor
M1	Using $v=u+$ at vertically to get t
A1	Correct t
M1A1	Complete as main method

Other alternative Methods

Question 4(a)

 by definite integration| $900 \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{63000}{k t^{2}}$ | M1 |
| :--- | :--- |
| $\int_{0}^{10.5} \mathrm{~d} v=\int_{1}^{4} \frac{70}{\mathrm{kt}} \mathrm{d} t$ | |
| $[v]_{0}^{10.5}=\left[-\frac{70}{k t}\right]_{1}^{4}$ | DM1A1
 Integration, limits not needed |
| $10.5(-0)=-\frac{70}{4 k}+\frac{70}{k}$ | M1
 Substitute limits |
| $k=5$ | A1
 Correct value |
| $\int_{0}^{v} \mathrm{~d} v=\int_{1}^{t} \frac{14}{t^{2}} \mathrm{~d} t$ | A1
 Integrate again with limits as shown |
| $v=14-\frac{14}{t} *$ | A1
 Obtain GIVEN answer |

OR:

$900 \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{63000}{k t^{2}}$	M1
$\int_{0}^{v} \mathrm{~d} v=\int_{1}^{t} \frac{70}{k t^{2}} \mathrm{~d} t$	
$[v]_{0}^{v}=\left[-\frac{70}{k t}\right]_{1}^{t}$	DM1A1 Integration, limits not needed
$v=\frac{70}{k}\left[-\frac{1}{t}\right]_{1}^{t}=\frac{70}{k}\left(1-\frac{1}{t}\right)$	M1 Substitute limits and $v=10.5, t=4$
$k=5$	A1 Correct value
$v=\frac{70}{5}\left(1-\frac{1}{t}\right)$	A1 substitute
$v=14-\frac{14}{t} *$	A1 Obtain GIVEN answer

Question 6(c) by reference circle

M1 Finding the required angle in radians.
M1 Using the period $\left(\frac{2 \pi}{\omega}\right)$ and their angle to find the required time.
A1 Correct time.

